Page 282 - DMTH504_DIFFERENTIAL_AND_INTEGRAL_EQUATION
P. 282

Unit 18: Charpit s Method for Solving Partial Differential Equations




                                                                                                Notes
                      1   2   2      a 2  1
                                                      2
                                                  2
            2
          (a  + 1) z = t +    [t  (a  1)]     log [t +  (t    (a  + 1)}] + b
                      2                2
          which is the required solution where t = ax + y.
                 Example 8: Solve by Charpit s method:
                                 2
                         q = (z + px) .
          Solution:

          Applying Charpit s method,
                     dp        dq       dz
                           =
                   F    F    F    F    F    F
                      p         q         q
                   x    y    y    z    p    q

                             dx   dy   df
                            =             .
                              F     F   0
                              p     q

          We have
                          dp              dq        dx
                  2 (z px ) p  2(z px )  2 (z px )  2 (z px )
                                                  x
                                        q
                   p
                  dq  dx
          or
                  q    x
          or     qx = a

                                               a       2
          Putting this value of q in the given equation   (z px )
                                               x

                     1  a
          or      p        z  .
                     x  x
          Now dz = p dx + q dy
                   1   a       a
                 =        z dx   dy
                   x   x       x
                              a
          or     (x dz + z dx) =   dx + a dy
                              x
          or     zx = 2 (ax) + ay + b.


                                   2
                                2
                 Example 9: Solve p  + q    2px   2qy + 2xy = 0.
          Solution:
          Applying Charpit s method,
                               dp        dq         dz      dx    dy
                                     =
                             F    F    F    F      F    F     F    F
                                p         q      p    q
                             x    z    y     z     p    q     p    q



                                           LOVELY PROFESSIONAL UNIVERSITY                                   275
   277   278   279   280   281   282   283   284   285   286   287