Page 286 - DMTH504_DIFFERENTIAL_AND_INTEGRAL_EQUATION
P. 286

Unit 18: Charpit s Method for Solving Partial Differential Equations




          Putting this value of p in (1),                                                       Notes

                         a qy       (a qy ) 2  2
                   2
                       2
                 (x   y  )     q xy     2   q    1  = 0
                           x           x
                    a qy
          or             {(x 2  y  2 )q  (a qy ) } xyq  2  1 = 0
                                        y
                      x
                              a qy  2         2
          or                      (x q ay ) xyq  1 = 0
                                x
                                   2
                                              2
                                            2
          or                (a   qy) (x q   ay) + x yq    x = 0
                                                      2
                                                 2
                                             2
          or                             aq (x  + y ) = a y + x.
                                             2
                                            a y x
                                      q =     2  2
                                            ( a x  y  )
                                      2
                           2
                     1   (a y x )y   a x y
          and     p    a
                     x    ( a x 2  y  2 )  ( a x  2  y 2  )
          Putting values of p and q in dz = p dx + q dy, we get
                                 2
                       2
                     (a x y )dx  (a y x ).dy
                 dz =         2  2
                            ( a x  y  )
                      (x dx  y dy )  x dy y dx
          or     dz =  a
                         x  2  y 2  ( a x  2  y  2 )
          Integrating,

                     a    2  2   1   1 y
                  z   log(x  y  )  tan    . b
                     2           a    x
          Self Assessment


          Apply Charpit s method to find the complete integrals of:
                            2
          1.   pxy + qp + qy = y .
                    2
          2.   q = 3p .
                        2
                    2
          3.   p   3x  =  q    y.
                          2
                             2
          4.   z = px + qy + p + q .
                                 2
                              2
          5.   2 (pq + py + qx) + x  + y  = 0.
                  2
          6.   Zxp    q = 0
          18.3 Special Types of First Order Equations
          In the section we shall consider some special types of first-order partial differential equations
          whose solutions may be obtained easily by Charpit s Method.





                                           LOVELY PROFESSIONAL UNIVERSITY                                   279
   281   282   283   284   285   286   287   288   289   290   291