Page 272 - DMTH504_DIFFERENTIAL_AND_INTEGRAL_EQUATION
P. 272

Unit 17: Lagrange’s Methods for Solving Partial Differential Equations




                                                                                                Notes
                   z  a  z       2
                       ,     (1 a  ).
                   r  r
                 z = a log r + a quantity independent of r
                         2
          and    z =  (1   a )   + a quantity independent of  .
                 General solution is

                                2
                 z = a log r +  (1   a )  + c
                                             y
                             2
                                            1
                          2
                    = a log (x  + y ) +  (1 a  2 )  tan    + c.
                                             x
                                                      2
                                          2
                 Example 4: Solve: (x + y) (p + q)  + (x   y) (p   q)  = 1.
          Solution:
          Put    (x + y) = X, (x   y) = Y,

                      z   z  X   z  Y    z   z
                  p        .      .           .
                      x  X   x   Y  x   X    Y
                     z   z  X    z  Y   z    z
                  q        .      .           ( 1).
                     y   X   y   Y  y   X   Y

          On substitution the given equation becomes

                        2       2
                     z        z    1
                  X       Y
                     X       Y     4
                        2          2
                     z    1      z
          or      X          Y      ,
                     X    4     Y
          which is of the form f  (x, p) = f  (q, y).
                           1       2
                       2               2
                     z         1     z
          Putting  X    = a and   Y     = a, we get
                    X          4     Y
                  z/ X =  (a/X)

                             1
          and    ( z/ Y) =     a  /X .
                             4
                 z = 2  (aX) + a quantity independent of x

                         1
          and    z = 2      a Y  + a quantity independent of y.
                         4

                 Complete integral is

                                1
                 z = 2  (aX) + 2    a Y + b
                                4





                                           LOVELY PROFESSIONAL UNIVERSITY                                   265
   267   268   269   270   271   272   273   274   275   276   277