Page 270 - DMTH504_DIFFERENTIAL_AND_INTEGRAL_EQUATION
P. 270

Unit 17: Lagrange’s Methods for Solving Partial Differential Equations




                   2
                2
          16.  p    q  = pz.                                                                    Notes
          17.  pz = 1 + q 2
          18.  p (1 + q) = qz.

          Standard IV

          If the equation is of the type
                       f  (x, p) = f  (y, q),                                     ... (1)
                       1        2
          write        f  (x, p) = f  (y, q) = c                                  ... (2)
                       1        2       1
          Solving equations (2) for q and p, we have
                         z/ x = p =    (x, c )
                                    1   1
          and            z/ y = q =    (y, c ).
                                    2   1
          Now             dz = p dx + q dy
                             =     (x, c ) dx +    (y, c ) dy,
                                 1   1      2    1
                                    x
                                               y
                                                c
                                      c
                           z =     1 ( , )dx  ( , )dy b .
                                       1
                                                 1
          The general integral may be obtained from the above complete integral and as in Standard I,
          there is no singular integral.
          Illustrative Examples

                 Example 1: Find complete integral of:

                          x
                   p   q  2 .
          Solution:

                   p  2x    q  a  (say),

                          2
                                  2
                 p = (2x + a)  and q = a ,
                 dz = p dx + q dy
                           2
                                2
                      = (2x + a)  dx + a  dy
                     (2x a ) 3
                              2
                 z =       + a y + b
                       3.2
                 the complete integral is
                                   2
                              3
                 6z   6b = (2x + a)  + 6a y.
                                          2
                                             2
                                2
                                   2
                                      2
                 Example 2: Solve: z  (p  + q ) = x  + y .
          Solution:
                            2
          Put z dz = dZ; i.e. Z = z /2.



                                           LOVELY PROFESSIONAL UNIVERSITY                                   263
   265   266   267   268   269   270   271   272   273   274   275