Page 374 - DMTH504_DIFFERENTIAL_AND_INTEGRAL_EQUATION
P. 374

Unit 22: Solution of Laplace Differential Equation




                                                                                                Notes
                                              2
                                    2
                                  1 d X    1 d Y    2
                                     2  =      2     .
                                 X dx      Y dY
          Here we have taken the negative constant because it suits the boundary conditions.
          Therefore the corresponding differential equations are
                               2
                                                 2
                              d X   2           d X   2
                                2    X = 0 and    2    Y  0
                               dx               dx
          whose general solutions are
                                      X = A cos x B sin x
                                              y     y
            and                                                  Y = Ce  De
          Hence

                                     y
                                   x
                                 V ( , ) = XY  ( cos x B sin x )(Ce  y  De  y )   ...(vii)
                                                A
          using boundary condition ( ), we get C = 0
          Otherwise V    as y    and hence
                                   x
                                     y
                                 V ( , ) = ( cosA  x B sin x )e  y  .  (we have put D = 1)
          and using boundary condition (iii), we have
                                  sin a = 0

                                           n
             or                                                      =  (n  1, 2, 3,...)
                                            a
          Thus for each value of n, we have
                                                n    n y /a
                                   x
                                 V n ( , ) = B n  sin  xe       (n  1,2,3,....)             ...(viii)
                                     y
                                                a
          and therefore for different values of n, the solution may be taken as

                                                  y
                                                x
                                   x
                                     y
                                 V ( , ) =   V n ( , )
                                           n  1
                                                  n    n y /a
                      or                      ( , )V x y  =  B  sin  xe           ...(ix)
                                               n
                                                   a
                                           n  1
          Using boundary condition (iv), we have
                                                  n
                                 V ( ,0) =    B n  sin  x  f  ( )
                                   x
                                                         x
                                                   a
                                           n  1
          which gives
                                             a
                                           2        n
                                     B n =    f  ( ) sin  xdx                      ...(x)
                                               x
                                           a         a
                                             0


                                           LOVELY PROFESSIONAL UNIVERSITY                                   367
   369   370   371   372   373   374   375   376   377   378   379