Page 377 - DMTH504_DIFFERENTIAL_AND_INTEGRAL_EQUATION
P. 377

Differential and Integral Equation




                    Notes          respectively. Therefore
                                                            x
                                                          V ( , ) = (A  cos x B  sin x )( cos h y D  sin h y )      ...(xxi)
                                                                                    C
                                                             y
                                   Using boundary conditions (xvii) and (xviii) in (xxi), we get
                                                                           n
                                                              A = 0 and           (n  1, 2, 3,...)
                                                                            a
                                   Hence for each value of n, we have

                                                                             n  y        n  y    n
                                                            x
                                                          V ( , ) =    C n  cosh   D n  sin h  sin  x          ...(xxii)
                                                             y
                                                                   n  1        a           a      a
                                   Using (xix) in (xxii) we have
                                                                           n
                                                                                  x
                                                          V ( ,0) =   C n  sin  x  f  ( )
                                                            x
                                                                   n  1    a
                                   Therefore
                                                                     a
                                                                    2       n
                                                                        x
                                                             C n =    f  ( )sin  x dx                    ...(xxiii)
                                                                    a        a
                                                                     0
                                   Again using (xx) in (xxii), we have
                                                   V              n  b        n b     n
                                                           C m  sin h   D n  cos h  sin
                                                   y               a            a     a   = 0
                                                     y b  n  1
                                   This will be true for all values of x, if
                                                                         n b         n
                                                                   C  sinh    D  cos h  b = 0
                                                                    n          n
                                                                          a          a
                                   or
                                                                           n b
                                                             D n =  C n  tanh  s                         ...(xxiv)
                                                                            a
                                   Therefore (xxii) with coefficients given by (xxiii) and (xxiv) is the solution of the equation (i)
                                   satisfying all the given boundary conditions.
                                   Self Assessment


                                   3.  Solve
                                         2    2
                                         U    U   0
                                         x 2  y 2

                                       subject to the conditions

                                           y
                                        U (0, ) 0
                                           y
                                          l
                                        U ( , ) 0
                                                     n  x
                                             x
                                               a
                                        and U ( , ) sin  and U ( , 0) 0 for n  1, 2, 3, ...
                                                               x
                                                       l
          370                               LOVELY PROFESSIONAL UNIVERSITY
   372   373   374   375   376   377   378   379   380   381   382