Page 392 - DMTH504_DIFFERENTIAL_AND_INTEGRAL_EQUATION
P. 392

Unit 23: Wave and Diffusion Equations by Separation of Variable




          L.H.S. is purely a function of t and R.H.S. is a function of x and y. Hence both sides will be equal  Notes
                                                                              1  2 Y
          only when both reduce to some constant value. Again in R.H.S. the sum of two terms   2   and
                                                                              X x
           1  2 X
               2  cannot be equal to a constant unless each of these is constant.
           X y
          Thus we have following three possibilities

                1   2 T     1  2 X     1  2 Y
          (a)          0,         0,         0,z
                2
               c T t  2    X x 2      Y y  2
                1  2 T       1  2  X     1  2  Y
          (b)           2 ,         2 1  ,      2 2  ,
                2
               c T t  2     X   x 2      Y y 2
               where   2  2  2   and
                          1  2
                1   2 T   2   1  2 X   2   1  2 Y  2
          (c)             ,            1  ,        2  ,
                2
               c T t  2       X x  2       Y y  2
               where again   2  2 1  2 2

          The general solution in above three cases are
           X  A x B 1 , Y  A y B 2 , T  A t B 3 ,                                 ...(iv)
                                     3
                          2
               1
           X  A e  1x  B e  1x  , Y  A 2  2e  2y  B  2 2e  2y  and T  A e  ct  B e  ct  ...(v)
                                                           3
                     1
               1
                                                     3
           X  A  cos  x B  sin  x
               1    1   1    1
          Y   A  cos  x B  sin  x
               2    2   2    2
          T   A  cos C t  B  sin C t                                              ...(vi)
               3         3
          From the boundary conditions (i) it is clear that (iv) and (v) are not the solution of the wave
          equation. Therefore (vi) must be required solution which is periodic in time. Hence we have

               u x , ,t  A  cos  x B  sin  x A  cos  y B  sin  y A  cosc t B  sinc t  ...(vii)
                   y
                         1    1    1   1    2    2   2    2    3        3
          Using the boundary condition (i), we get
                    t
                   y
               u (0, , )  A A 2  cos  2 y B 2  sin  2 y A 3  cosc t B 3 sinc t  0
                         1
                    A 1  0
               u a , ,t  B 1  sin  1 a A 2  cos  2 y B 2 sin  2 y A 3 cosc t B 3 sinc t  0;
                   y

                    Sin a  0
                   1
          or    1 a  m

                   m
                1                                        m  1,2,3,...
                    a



                                           LOVELY PROFESSIONAL UNIVERSITY                                   385
   387   388   389   390   391   392   393   394   395   396   397