Page 393 - DMTH504_DIFFERENTIAL_AND_INTEGRAL_EQUATION
P. 393

Differential and Integral Equation




                    Notes          Similarly using other boundary condition, we get
                                                     n
                                        A 2  0 and   2                  n = 1, 2, 3, ...
                                                     b
                                   Now (vii) becomes

                                                                            m x    n y
                                             y
                                                                        x
                                        u  x , ,t  A  cos  t  B  sin  t x   sin  sin
                                         mn         mn   mn   mn    mn                                   ...(viii)
                                                                              a     b
                                                 2 m  2  n 2
                                   where     mn            .
                                                    a 2  b 2
                                   Since the wave equation is linear and homogeneous, therefore sums of any number of different
                                   solution will still be a solution.

                                   Thus instead of (viii) an appropriate solution of  u x , ,t is
                                                                             y

                                                                              m x    n y
                                           y
                                        u x , ,t      A mn  cos  mn t B mn  sin  mn t  sin  sin            ...(ix)
                                                m  1 n  1                       a     b

                                   where   2  2 mn  2 m 2  n 2
                                                    a  2  b 2
                                   Now using the initial conditions (ii), we have

                                                           m x    m y
                                        u x , ,0     A mn  sin  sin    f  , x y  .
                                           y
                                                m  1 n  1    a     b
                                                                               )
                                   This series is called the double Fourier series of  ( ,f x y therefore.
                                             2 2  a  b         m x   n y
                                        A mn  .        f  , x y  sin  sin  dxdy
                                             a b  x  0 y  0     x     b


                                          u                   m x    n y
                                   and               C  mn mn  sin  sin   g  , x y  .                      ...(x)
                                                         B
                                          t  t  0  m  1 n  1    a     b
                                   Therefore,

                                                2 2  a   b         m x   n y
                                        c  mn mn  , ,      g  , x y  sin  sin  dxdy
                                           B
                                                a b  x  0 y  0      x     b
                                               4    a  b         m x    n y
                                   or   B mn      ,      g  , x y  sin  sin  dxdy                          ...(xi)
                                             abc  mn  x  0 y  0    x     b

                                   Hence the solution of two dimensional wave equation is given by (ix) with the coefficients (x)
                                   and (xi) satisfying all the conditions (i) and (ii).

                                   23.1.3 The Vibrations of a Circular Membrane

                                   In the case of the circular membrane we naturally have recourse to polar co-ordinates with the
                                   origin at the centre. In this case the equation of motion obtained in Cartesian co-ordinates must




          386                               LOVELY PROFESSIONAL UNIVERSITY
   388   389   390   391   392   393   394   395   396   397   398