Page 200 - DMTH505_MEASURE_THEOREY_AND_FUNCTIONAL_ANALYSIS
P. 200

Unit 16: Continuous Linear Transformations




               Consider the vector x defined by                                                 Notes
                                         y
                                     x =   i   when y    0 and x  = 0 otherwise.  … (12)
                                      i  y i      i       i

                               y
               Hence  x   max   i  1 .
                               y i

                           n         n
               and |f (x)| =   x y     y i .
                              i  i
                           i 1       i 1
                         n
               Therefore   y  i  f(x)  f  x    f .
                        i 1

                n
                   y     f                                                       … (13)
                    i
                i 1
                                                       n
               It follows  now from  (11)  and  (13)  that  f  y i   so  that  y     f  is  an  isometric
                                                       i 1
               isomorphism.

               Hence,    n  *  .
                            n
                            1
               This completes the proof of the theorem.
          Theorem 5: The conjugate space of    is   , where
                                       p
                                            q
                  1  1
                        1  and 1 < p <  .
                  p  q

          or        * p   q .


                                         p
          Proof: Let x = (x )      so that   x  .                                … (1)
                       n    p           n
                                    n 1
                                                  th
          Let    = (0, 0, 0, …, 1, 0, 0, …) where 1 is in the m  place.
              n
                 e       for n = 1, 2, 3, …
                      p
                  n
                                                                                 *
          We shall first determine the form of f and then establish the isometric isomorphism of    onto
                                                                                 p
           q .
                                                                             n
          By using (e ), we can write  any sequence (x , x , …, x , 0, 0, 0, …) in the form   x e  and
                    n                          1  2    n                        k  k
                                                                             k 1
              n
           x    x e k  = (0, 0, 0, …, x , x , …).
                 k
                               n+1  n+2
              k 1



                                           LOVELY PROFESSIONAL UNIVERSITY                                   193
   195   196   197   198   199   200   201   202   203   204   205