Page 210 - DMGT209_QUANTITATIVE_TECHNIQUES_II
P. 210

Unit 10: Correlation



            Karl Pearson’s Method – Without Deviations (Short-cut Method)                         Notes


            When the arithmetic means of both sets of numerical items are not whole numbers and involve
            decimals, calculating the coefficient  of correlation by  direct method becomes  tedious. To
            overcome this difficulty the following modified short-cut method formula is used:

                                   X Y
                     Cov(X , Y ) =   i  i    X Y
                          i  i      n

                                   X  2 i         Y i 2
                                         2
                          V(X ) =        X ; V(Y ) =     Y 2
                             i                i
                                   n               n
                                   Cov(X ,Y )
                                           i
                                         i
                              =
                                   {V(X )V(Y )}
                                       i
                                           i
                                          
                                         n X Y   X i  Y
                              =             i  i       i
                                                       2
                                        2
                                     n X     2    n Y     2  
                                      
                                                    
                                            X
                                                          Y
                                       i     i      i     i  
                   Example 2: Calculate the Karl Pearson’s coefficient of correlation for the following data
            between sales and advertising expenditure.
            Let sales represents Xi variable and advertise expenditure represents Yi variable to calculate the
            correlation coefficient using the following formula:
                                         n X Y   X i  Y
                                          
                              =             i  i       i
                                        2
                                                       2
                                     n X     2    n Y     2  
                                            X
                                                          Y
                                                    
                                      
                                       i     i      i     i  
                     i X         i Y          i X            i Y   2         i X Y
                                               2
                                                                              i
                    1            3            1             9                3
                    2           15            4            225              30
                    3            6            9             36              18
                    4           20           16            400              80
                    5            9           25             81              45
                    6           25           36            625              150
                  X =21       Y =78        X =91       Y =1376        X Y = 326
                                              2
                                                            2
                                 i
                                                                            i
                                                                             i
                                                           i
                     i
                                              i

                                         6x326  21x78  
                              =
                                     6x91   21  2  6x1376   78  2
                                                           
                                             
                                                           
                                      318
                              =  (10.247 x 46.605)
                              = 0.667
            This suggests that a fairly high degree of correlation between X and Y series i.e. between sales
            and advertising expenditure.
                                             LOVELY PROFESSIONAL UNIVERSITY                                  205
   205   206   207   208   209   210   211   212   213   214   215