Page 211 - DMGT209_QUANTITATIVE_TECHNIQUES_II
P. 211

Quantitative Techniques-II



                      Notes         Karl Pearson’s Method – Shifting Origin


                                    In case the magnitude of the data is large, using the two methods explained above will give lot
                                    of inconvenience while calculating the correlation coefficient by Karl Pearson’s method. So we
                                    take deviations from some convenient numbers to reduce the magnitude of data. There will be
                                    no change in the value of correlation coefficient even if deviations are taken. We define, u  = X -
                                                                                                            i   i
                                    A and = v  = Y - B, where A and B can any arbitrary and assumed values. The formulae are given
                                            i   i
                                    below,
                                                            2 i u         2 i v             i u v
                                                                 2
                                                                                2
                                                  V(u ) =        u ; V(vi) =     v ; Cov(u ,v ) =   i    u v
                                                     i      n              n          i  i    n
                                                            Cov(u ,v )
                                                       =       i  i
                                                           {V(u ) V(v )}
                                                               i   i
                                                                    
                                                                   n u v    u i   v i
                                                                        i
                                                                      i
                                                       =
                                                                               2
                                                                 2
                                                              n u     2    n v     2 
                                                                     u
                                                                                   v
                                                                             
                                                               
                                                                i     i     i     i  
                                           Example 3: Using short cut method, we calculate ‘r’ for the following data of X  =
                                                                                                              i
                                    Advertising expenditure (Rupees in thousands) and Y  = sales (Rupees in lakhs). Let us define
                                                                                i
                                    A = 60 and B=70, two variables chosen arbitrarily. Then u  = X - 60 and v  = Y  - 70
                                                                                  i   i       i   i
                                                                                  2
                                                                                              2
                                         X       Y        u           v           i u         i v       u v
                                          i
                                                                                                           i
                                                                                                         i
                                                  i
                                                           i
                                                                      i
                                         39      47       - 21       -23         441        529         +483
                                         65      53       5          -17         25         289         - 85
                                         62      58       2          -12          4         144         - 24
                                         90      86       30         16          900        256         +480
                                         82      62       22         - 8         484         64         -176
                                         75      68       15         - 2         225         4          - 30
                                         25      60       -35        -10        1225        100         -350
                                         98      91       38         21         1444        441         +798
                                         36      51       -24        -19         576        361         +456
                                         78      84       18         14          324        196         +252
                                                                                              2
                                                                                            v =
                                                                                 2
                                           Total         u =50      v = -40    u = 5648    i       u v = 2504
                                                                                                         i
                                                           i
                                                                      i
                                                                                 i
                                                                                                        i
                                                                                            -2384

                                                            u i  50        v i   40
                                                     u =            5; v         4
                                                            n    10        n     10
                                                                    
                                                                   n u v    u i   v i
                                                                        i
                                                                      i
                                                       =     n u     2    n v     2 
                                                                 2
                                                                               2
                                                                     u
                                                                                   v
                                                                             
                                                               
                                                                i     i     i     i  
                                                                   10x2540  50x 40    
                                                       =
                                                                                           2
                                                                         
                                                              10x5648   50  2  10x2384   40    
                                                                                         
                                                                27040         27040
                                                       =                 
                                                            53980 22240   34647.373
                                                       = 0.78
                                    Hence the correlation between X and Y series is fairly high as the coefficient of correlation is 0.78.
            206                              LOVELY PROFESSIONAL UNIVERSITY
   206   207   208   209   210   211   212   213   214   215   216