Page 213 - DMGT209_QUANTITATIVE_TECHNIQUES_II
P. 213

Quantitative Techniques-II



                      Notes         Correlation of Grouped Data


                                    When the number of observations is large, the data are often classified into two-way frequency
                                    distribution i.e. table where in the values of one variable (X) are represented in the rows while
                                    other variable (Y) in columns. These values can be either discrete or continuous. The frequencies
                                    in each class are shown in cells in the body of the table.
                                    Steps for calculating correlation coefficient for grouped data:
                                    (i)  Record the mid-points (mp) of the class intervals for both X and Y variables.

                                    (ii)  Choose an assumed mean in X series and calculate the deviations (dx) from it. The same
                                         procedure to be used for Y series and calculate the deviations (dy).
                                    (iii)  To simplify the calculations, step deviations can be taken by dividing deviations by a
                                         common factor.
                                                                 2
                                    (iv)  Calculate f.dx, f .dx.dx i.e.f.dx , f.dx.dy for X series and f.dy, f .dy.dy i.e.f.dy , f.dx.dy for Y
                                                                                                     2
                                         series.
                                    (v)  Substitute all the values obtained in the following formula:

                                                                    
                                                                   n fdxdy   fdx  fdy
                                                       =
                                                                          2
                                                                                   2
                                                                          
                                                                                       fdy
                                                                               
                                                             n fdx  
                                                                2   fdx    n fdy     2  
                                                                                         
                                           Example 5: Calculate the Karl Pearson’s coefficient of correlation for the following
                                    grouped data:
                                         Sales Revenue            Advertising Expenditure (  lakh)
                                                                                                         Total
                                           (  lakh)        5 -15      15 - 25     25 - 35     35 -45
                                           75 - 125         3          4            4           8         19
                                           125 - 175        8          6            5           7         26
                                           175 - 225        2          2            3           4         11
                                           225 - 275        3          3            2           2         10
                                            Total          16          15          14           21        66

                                                            5-15   15-25   25-35  35-45
                                                           X
                                                      mp     10    20    30     40
                                      Y
                                                           dx
                                              mp             -1    0     1      2          fdy    fdy 2   fdxdy
                                                    dy                                f
                                       75-125   100   -1    3(3)   4(0)   4(-4)   8(-16)   19   -19   19   -17
                                       125-175   150   0    8(0)   6(0)   5(0)   7(0)   0   0      0       0
                                       175-225   200   1    2(-2)   2(0)   3(3)   4(8)   11   11   11      9
                                       225-275   250   2    3(-6)   3(0)   2(4)   2(8)   10   20   40      6

                                                                                           fdy    fdy 2    fdxdy
                                          Total        f     16    15    14     21    66
                                                                                          =12    = 70     = -2









            208                              LOVELY PROFESSIONAL UNIVERSITY
   208   209   210   211   212   213   214   215   216   217   218