Page 330 - DMTH201_Basic Mathematics-1
P. 330

Unit 12: Successive Differentiation




          12.3 Summary                                                                          Notes

               It is extension of differentiation of one variable function successive.
               Consider,

               A one variable function,
               y = f(x) (x is independent variable and y depends on x.)
               Here if we make any change in x there will be a related change in y.
                (n)
                           th
               f (x) denotes n  derivative of f.
                       th
               Value of n  derivative of y = f(x) at x = a is denoted by,
                            n
                           d y
                n
               f (a), y (a), or
                    n        n
                           dx
                               x a
                                                            n
               (i.e. value can be obtained by just replacing x with a in f (x).)
          12.4 Keyword
          Successive Differentiation: If y = f(x) is a differentiable function then by differentiating it w.r.t. x,
                 dy
          we get     f x
                 dx


          12.5 Self Assessment

                     -1
          1.   y  e a  sin x  (1  x  2 )y  (2n  1)xy   is equal to:
                                n  2        n  1
                         2
                     2
                                                       2
                                                           2
               (a)  (n  + n )y                   (b)  (n    a )y
                           n                                 n
               (b)  (n  + a )y                   (d)  (n    a )y
                                                        2
                     2
                         2
                                                            2
                           n                                  n
                                       2
                                      d y   dy
          2.   x  cos ,y  sin5   1 x  2    x    is equal to:
                                      dx  2  dx
               (a)   5y                          (b)  5y
               (c)  25y                          (d)  25y
                                2
                               d y
                     1
          3.   y  sin x   1 x 2     is equal to:
                               dx  2
                       dy
               (a)   x                           (b)  0
                       dx
                     dy                                 dy  2
               (c)  x                            (d)  x
                     dx                                 dx
                        th
          4.   If y  is the k  derivative of y with respect to x, y = cos(sin x) then y  sin x + y  cos x is equal to:
                 k                                                1      2
                        3
                                                          3
               (a)  y sin  x                     (b)  y sin  x
               (c)  y cos  x                     (d)  y cos  x
                        3
                                                          3
                                           LOVELY PROFESSIONAL UNIVERSITY                                   323
   325   326   327   328   329   330   331   332   333   334   335