Page 331 - DMTH201_Basic Mathematics-1
P. 331

Basic Mathematics – I




                    Notes                n
                                        d
                                   5.       e x  sin x  is equal to:
                                        dx n
                                                                                  x
                                                                               n/2
                                                x
                                       (a)  2  n/2  .e  cos(x +n /4)     (b)  2  .e  cos(x   n /4)
                                             n/2
                                                 x
                                                                                  x
                                                                               n/2
                                       (c)  2  .e  sin (x + n /4)        (d)  2  .e  sin (x   n / 4)
                                   12.6 Review Questions
                                   1.  If y = sin (m sin x)
                                                    -1
                                       Then prove, (1   x )y    (2n + 1)xy  + (m    n )y  = 0
                                                                             2
                                                                          2
                                                      2
                                                        n+2         n+1         n
                                              -1
                                   2.  If y = cot  x,
                                       Then prove, (1 + x )y  + 2(n + 1)xy   + n(n + 1)y  = 0
                                                      2
                                                        n+2         n+1        n
                                   3.  If y 1/m  + y -1/m  = 2x
                                                                             2
                                                   2
                                                                         2
                                       Then prove, (x    1)y  + (2n + 1)xy  + (n    m )y  = 0
                                                        n+2         n+1         n
                                                                                           3
                                   4.  Let p and q be two real numbers with p > 0. Show that the cubic x  + px + q has exactly one
                                       real  root.
                                   5.  Let a > 0 and f  be continuous on [ a, a]. Suppose that f’(x) exists  and f’(x)   1 for all
                                       x   ( a, a). If f(a) = a and f( a) =  a, show that f(0) = 0.
                                                          2
                                   6.  Let f(x) = 1 + 12|x|  3x . Find the global maximum and the global minimum of f on [ 2, 5].
                                       Verify it from the sketch of the curve y = f(x) on [ 2, 5].
                                   Answers: Self  Assessment
                                   1.  (c)            2.   (d)           3.   (c)
                                   4.  (d)            5.   (c)

                                   12.7 Further Readings




                                   Books       Husch, Lawrence S. Visual Calculus, University of Tennessee, 2001.
                                               Smith and Minton, Calculus Early Trancendental, Third Edition, McGraw Hill 2008.




                                   Online links  http://www.suitcaseofdreams.net/Trigonometric_Functions.htm
                                               http://library.thinkquest.org/20991/alg2/trigi.html
                                               http://www.intmath.com/trigonometric functions/5 signs of trigonometric
                                               functions.php













          324                               LOVELY PROFESSIONAL UNIVERSITY
   326   327   328   329   330   331   332   333   334   335   336