Page 180 - DMGT404 RESEARCH_METHODOLOGY
P. 180

Research Methodology




                    Notes              \                    r  = r
                                                             XY  uv
                                       This shows that correlation between  X and Y is equal to correlation between u and v,
                                       where u and v are the variables obtained by change of origin and scale of the variables X
                                       and Y respectively.
                                       This property is very useful in the simplification of computations of correlation. On the
                                       basis of this property, we can write a short-cut formula for the computation of r :
                                                                                                        XY
                                                                     nå u v - (å u  )(å  v )
                                                                         i i     i    i
                                                            r  =                                          ...(10)
                                                            XY    nå u - (å u i ) 2  nå v - (å v i ) 2
                                                                                   2
                                                                      2
                                                                                   i
                                                                      i
                                   2.  The coefficient of correlation lies between – 1 and + 1.
                                       To prove this property, we define
                                              X   X       Y  Y
                                          x '   i   and  '   i
                                                       y
                                            i            i
                                                            
                                                 X            Y
                                              X  i   X  2  Y i   Y  2
                                            2
                                                           2
                                                          y
                                       \ x '     2    and  '   2
                                            i
                                                           i
                                                               
                                                  X              Y
                                                      X   X  2       Y   Y  2
                                              2
                                                                 2
                                       or    x '   i     and   y '   i
                                              i
                                                     2          i      2
                                                     X                   Y
                                       From these summations we can write  å  ' x  å  ' y   n
                                                                          2
                                                                                 2
                                                                                 i
                                                                          i
                                                1
                                                      X   X Y   Y 
                                                n    i     i      1    X i   X   Y i   Y   1
                                                                                           y
                                       Also,  r =                                  x ' ' i
                                                                                          i
                                                       Y        n     X     Y    n
                                                       X
                                       Consider the sum x  +  y . The square of this  sum is always a non-negative  number,
                                                        i   i
                                                 2
                                       i.e., (x  + y )   0.
                                            i   i
                                       Taking sum over all the observations and dividing by n, we get
                                          1 å ( 'x +  2    0          1 å ( 'x +  ' y + 2 '    0
                                                                             2
                                                                                2
                                                                                   x
                                          n     i  i ) ' y     or      n     i  i    i  i ) ' y
                                                         1   ' x + å  ' y + å
                                                                       2
                                                                1
                                                                     2
                                                              2
                                                                            y
                                        or                å   i      i    x ' '   0
                                                                              i
                                                                            i
                                                         n      n      n
                                        or     1 + 1 + 2r ³ 0  or  2 + 2r ³ 0  or  r ³ – 1               .... (11)
                                       Further, consider the difference x  – y . The square of this difference is also non-negative,
                                                                  i   i
                                                 2
                                       i.e., (x  – y )   0.
                                            i   i
                                       Taking sum over all the observations and dividing by n, we get
                                                  1 å ( 'x -  ) ' y  2    0
                                                 n     i  i
                                            1 å   2  2
                                                        x
                                        or      ( 'x +  ' y - 2 '  i  i ) ' y    0
                                                  i
                                                     i
                                            n
          174                               LOVELY PROFESSIONAL UNIVERSITY
   175   176   177   178   179   180   181   182   183   184   185