Page 206 - DECO403_MATHEMATICS_FOR_ECONOMISTS_HINDI
P. 206

VED1
          E\L-LOVELY-H\math12-1 IInd 6-8-11 IIIrd  24-1-12 IVth 21-4-12 Vth 20-8-12 VIth 10-9-12



          vFkZ'kkfL=k;ksa dk xf.kr




                   uksV         12-2  ekud lekdy           
   %  &

                                ekud iQyuksa osQ vody xq.kkad osQ vk/kj ij ge oqQN eq[; iQyuksa osQ lekdyksa dks Kkr djsaxs] tks fuEu gSa%


                                              lekdyu                                 vodyu


                                      ∫  xdx =  n  x n + 1  +  c ,(n ≠  −  1)     1  .  d  (x n +  1 ) =  x n
                                  1-           n + 1                            n + 1 dx


                                      ∫  1  dx =  log| | c                      d  (log| |) =  1
                                                                                       x
                                                     +
                                                   x
                                  2-    x                                       dx           x
                                      ∫  e =  x  e +  x  c                      d  (e x ) =  e x
                                  3-                                            dx


                                      ∫  adx =  x  a x  +  c                    d     a x      = a x
                                  4-           log a                            dx     log a   
                                                  e
                                                                                      e
                                      ∫  sinx dx =− cosx +  c                   d  (cos ) =  x  sinx
                                                                                   −
                                  5-                                            dx

                                      ∫  cosx dx =  sin x +  c                  d  (sin ) =  cosx
                                                                                      x
                                  6-                                            dx

                                      ∫  sec x dx = 2  tanx +  c                d  (tan ) =  sec x
                                                                                             2
                                                                                      x
                                  7-                                            dx
                                      ∫  cosec x dx =− cotx + c                 d  ( cot ) =  x  cosec x
                                            2
                                                                                                2
                                                                                   −
                                  8-                                            dx
                                      ∫  sec tanxdx =  secx +  c                d  (sec ) = sec tan x
                                                                                             x
                                                                                      x
                                           x
                                  9-                                            dx
                                      ∫  cosec cotxdx =− cosecx +  c            d  ( cosec ) =  x  cosec x  cotx
                                                                                   −
                                             x
                                  10-                                           dx
                                      ∫    1    dx =  sin − 1 x +  c            d  (sin − 1  ) x =  1
                                  11-
                                         1 −  x 2                               dx            1 −  x 2


                                      ∫   1   dx =  tan − 1 x +  c              d  (tan − 1  ) x =  1
                                  12-   1 +  x 2                                dx           1 +  x 2


                                      ∫     1    dx =  sec − 1 x +  c           d  (sec − 1  ) x =  1
                                  13-                                                                -
                                            2
                                                                                                2
                                        xx −   1                                dx          xx −   1
   201   202   203   204   205   206   207   208   209   210   211