Page 51 - DECO403_MATHEMATICS_FOR_ECONOMISTS_HINDI
P. 51

VED1
          E\L-LOVELY-H\math2-1 IInd 21-10-11 IIIrd  24-1-12 IVth 21-4-12 Vth 20-8-12 VIth 10-9-12


                                                                                           bdkbZ    lhek o lrrrk





                                             m         m (m − 1) h  2                        uksV
                                                                    
                                                      h
                                            a   1 +  m    +  2      +  .... 1   −
                                                      a
                                                                     a
                                      : lim                                   
                                        h→ 0                  h
                                             m   m  m  (m − 1) h    
                                            ah    +            2  +  .... 
                                      : lim       a     2    a      
                                        h→ 0            h
                                             m m    m (m − 1) h    
                                              
                                      : lim a    +            +  .... , (h ≠    0)
                                        h→ 0    a     2!    a 2   
                                            m       m − 1
                                      : a ×    =  ma    :  nk;k¡ i{kA
                                         m
                                             a
          fVIi.kh % ;g chth; iQyu dh lhek Kkr djus osQ fy, izeq[k lw=k osQ :i esa iz;qDr gksrk gSA

                            p   x
          mnkgj.k 9-  lim 1 +    	dk eku Kkr dhft,A
                        
                     x   0    x  
                       p   x
          gy %  lim 1 +  
                   
                x →∞    x 
                       1   x
          miizes;  lim 1 +     : 	 osQ iz;ksx ls
                    
                x →∞   x 
                        p   x                 p    / xp     p

                lim 1 +      : 	   D;ksafd   lim   1 +      =  e p .             mÙkj
                    
                 x →∞    x            / xp→∞    / xp       
                                log x
                     lim       
          mnkgj.k 10-   x    1    1 − x    	dk eku Kkr dhft,A

          gy %   :   ; , j[kks] tcfd , cgqr gh NksVk gSA
                                                              h 2  h 3
                                log x       log (1 +  ) h  h −  2  +  3  −  ....
          vr%                lim      :  lim          =  lim
                             x → 1  1 − x  h→  0  −  h  h→  0    −  h
                                                h   h 2    
                                      : lim −  1 −   +  −  ....     tc , ≠ -  : 8     mÙkj
                                        h→ 0    2    3     

                          e x  − e -x
          mnkgj.k 11-  lim       	dk eku Kkr dhft,A
                      x    0  x
                               x
                              e −  e − x    1        x 2  x 3           x 2  x 3      
          gy %            lim        	: lim    1 +   x +  +  +  .... −      1 −  x +  −  +  ....   
                          x → 0  x      x → 0 x      2!  3!            2!   3!       
                                            1      x 3       
                                      :  lim 0 x    2 x +     3!  +  ....        
                                        x →
   46   47   48   49   50   51   52   53   54   55   56