Page 52 - DECO403_MATHEMATICS_FOR_ECONOMISTS_HINDI
P. 52

VED1
          E\L-LOVELY-H\math2-1 IInd 21-10-11 IIIrd  24-1-12 IVth 21-4-12 Vth 20-8-12 VIth 10-9-12



          vFkZ'kkfL=k;ksa dk xf.kr




                   uksV                                                x 2      
                                                           : lim 2 1 +   +  ....                 <      ≠ -=
                                                              x → 0      3!    

                                                           :                                                mÙkj

                                               e x  −
                                mnkgj.k 12- lim       	dk eku Kkr dhft,A
                                           x   0  x
                                                                   1 +  x +  x 2  +  x 3  .... ∞    −  1
                                                      x
                                                     e − 1             2!  3!       
                                gy %              lim       : lim
                                                  x → 0  x    x → 0         x
                                                                    x 2  x 3                  x   x 2     
                                                                   x +  2!  +  3!  +  .... ∞    x    1 +  2!  +  3!  +  .... ∞  
                                                           : lim                     :  lim               
                                                              x → 0       x            x → 0        x
                                                                    x   x 2      
                                                           :  lim      + 1  2!  +  3!  +  ∞ ....    
                                                              →a
                                                              x
                                                           : tc   ≠ -  :                                    mÙkj

                                               1 + 2+ 3+ .... + x
                                mnkgj.k 13-  lim                dk eku Kkr dhft,A
                                           x          x 2
                                                 1 +  2 +  3 +  .... +  x  xx  1)
                                                                         ( +
                                gy %          lim        2       	: lim     2
                                              x →∞      x           x →∞  2x
                                                                         2    1          1
                                                                        x    1 +      1 +
                                                                  : lim       x    :  lim  x
                                                                    x →∞   2x 2     x →∞  2

                                                                    1                                   1    
                                                                  :   .                                lim  = 0 
                                                                    2                                x →∞  x  
                                               1
                                vr% vHkh"V eku :  .                                                         mÙkj
                                               2
                                                             a x  − b x   a
                                mnkgj.k 14- fl¼ dhft, fd	lim        = log   .
                                                         x    0  x       e  b
                                       a x  b x
                                ;k  lim        dk eku Kkr dhft,A
                                   x    0  x

                                gy % Li"V gS tc   : - rks va'k rFkk gj nksuksa 'kwU; gks tkrs gSaA vr% 
  rFkk    dk ,DliksusUVh izes; dh
                                lgk;rk ls izlkj djus ij]
                                              a −  b x     e x  log e a  − e x  log e b
                                               x
                                 ck;k¡ i{k :  lim    :  lim
                                           x → 0  x    x → 0     x
                                                                                         x
                                                           x
                                                         (log a  ) 2                  ( log b ) 2  
                                               1 +  x  log a +  e  2! e  +  .... −      1 +  x  log b +  e  2! e  +  .... 
                                       :  lim                                                      
                                          x → 0                           x
   47   48   49   50   51   52   53   54   55   56   57