Page 48 - DECO403_MATHEMATICS_FOR_ECONOMISTS_HINDI
P. 48

VED1
          E\L-LOVELY-H\math2-1 IInd 21-10-11 IIIrd  24-1-12 IVth 21-4-12 Vth 20-8-12 VIth 10-9-12



          vFkZ'kkfL=k;ksa dk xf.kr




                   uksV               tc iQyu dh lhek Lora=k pj osQ eku osQ ck;ha vksj ls izkIr dh tkrh gS rks mls  ---------  dgrs gSaA

                                      ;fn fdlh iQyu      dh   : 
 ij nf{k.k rFkk oke i{k nksuksa lhek,¡ fo|eku rFkk ,dleku gksa] rks
                                                                 ---------
                                      iQyu      dh   : 
 ij lhek dk   gksrk gSA
                                      pj   osQ fdlh eku 
 osQ fy, iQyu      dk eku vkSj  ---------  eku fHkUu gksuk vko';d ugha gSA
                                                                                                       ---------
                                     ;|fi gesa lhek Kkr djus osQ fy, nf{k.k i{k o oke i{k nksuksa lhek,¡ Kkr djuh pkfg, ijUrq    Lrj
                                      ij ge lhek vf/dka'kr% lh/s gh Kkr djrs gSaA



                                                               gy lfgr mnkgj.k


                                dHkh&dHkh mHk;fu"B xq.ku[k.M ls Hkkx nsuk ljy ugha gksrk gSA ,slh fLFkfr esa       fof/ dk mi;ksx djosQ
                                lhek lqxerk ls tkuh tk ldrh gSA fuEu mnkgj.kksa ls fØ;k Li"V gks tk;sxhA
                                fVIi.khµva'k vkSj gj nksuksa dks mlosQ mHk;fu"B xq.ku[k.M tks 'kwU; ugha] ls Hkkx nsuk rqjUr lEHko u gks rks
                                Js.kh izlkj   !" 
  
  
 
    
  ;k fdlh :ikUrj.k     
   ,    
  osQ ckn ;g fØ;k laHko gks
                                ldrh gSA
                                              x 3  − a 3
                                mnkgj.k 1-  lim       dk eku Kkr dhft,A
                                          x → a  x  − a

                                                     x −  a 3     (x −  ax +  ) (  2  a +  2  ax )
                                                      3
                                gy %             lim        :  lim
                                                 x →  a  x −  a  x → a  (x −  ) a


                                                           : lim      ; 
  ; 
  9                      <    ≠ 
=
                                                              x → a




                                                           : 
  ; 
  ; 
  :  
                              mÙkj
                                                       x
                                              log (1 + )  − x
                                mnkgj.k 2- lim   e            dk eku fudkfy,A
                                          x  0      x 2
                                                                    x −  x 2  +  x 3  −  ... −    x
                                              log (+ x) −  x          2  3       
                                                  1
                                gy %       lim  e           :  lim
                                          x → 0    x 2        x → 0        x 2
                                                                  x 2  x 3           2   1  x    
                                                                 −   +    −  ...    x    −  +  −  ... 
                                                           : lim   2   3      :  lim     2  3    
                                                             x → 0    x 2       x → 0     x 2
                                                                   1  x    
                                                           :  lim −    +  −  ... 
                                                              x → 0    2  3  
                                                               1            1
                                                                    −
                                                           : −   +  0...  :  −                              mÙkj
                                                               2            2



                                             x 3  − b 3
                                         lim

                                   VkLd              dk eku fudkysaA                                4mÙkj% )  5
                                         x  → b  x  − b
   43   44   45   46   47   48   49   50   51   52   53