Page 49 - DECO403_MATHEMATICS_FOR_ECONOMISTS_HINDI
P. 49

VED1
          E\L-LOVELY-H\math2-1 IInd 21-10-11 IIIrd  24-1-12 IVth 21-4-12 Vth 20-8-12 VIth 10-9-12


                                                                                           bdkbZ    lhek o lrrrk




                          2  −   + 2ax  a 2  x                                                   uksV
          mnkgj.k 3-	 lim              	dk eku Kkr dhft,A
                    xa      x  − a   

                               2  −   + 2ax  a 2   x  2  (x −  ) a  2
          gy %             lim               :  lim
                          x →a    x  − a      x → a  x − a
                                              : lim     8 
  : 
 8 
 : -              mÙkj
                                                x → a
                              x
                         x 2  − 3+ 2
          mnkgj.k 4- lim            dk eku Kkr dhft,A
                     x   2  x 2  + x  − 6
                     x −  2  3x +  2   (x −  2) (x −  1)  (x − 1)
          gy %    lim            :  lim             :  lim                      <    ≠  =
                  x → 2  x +  2  x −  6  x → 2  (x −  2) (x +  3)  x → 2  (x + 3)

                                        21      1
                                          −
                                      :       :                                       mÙkj
                                        2 +  3  5
          fLFkfr 3  3   	) % vifjes; iQyu dh lhek  3 ,

          ;fn   :      vkSj      ,d vifjes; iQyu gS rks      dh lhek Kkr djus osQ fy, igys iQyu dks ifjes; cuk
          yhft, fiQj fLFkfr   dh rjg lhek Kkr dj yhft,A
                         3  1+ x  − 1
          mnkgj.k 5-  lim         	dk eku Kkr dhft,A
                     x   0  x
                                                 1
                            3 1 +  x −  1  (1 +  ) x  3  −  1
          gy%	         	 lim          :  lim
                        x → 0  x        x → 0   x
                                                    11  − 1 
                                                     
                                                     
                                               1    33       
                                                     
                                           1 +  x +         x +  2  ......∞  −  1
                                      : lim    3       2!
                                        x → 0            x
                                                1   −  2   x
                                            1   3     3        1      1
                                      : lim   +          +  ...... ∞   :   +  0 =     mÙkj
                                        x → 0 3    2!              3      3

                                    (1 +  1/2  − ) x  − (1  ) x  1/2
          mnkgj.k 6- fl¼ dhft, %	 lim                  	
	 "
                                 x   0       x

                    (1 +  ) x  1/ 2  −  (1 −  ) x  1 / 2  1 +  x −  1 −  x
          gy%  lim                       :  lim
               x → 0         x             x → 0     x
                                             1 +  x −  1 −  x  1 +  x +  1 −  x
                                      : lim               ×
                                        x → 0     x          1 +  x +  1 −  x

                                             (1 +  ) x −  (1 −  ) x        2x
                                      : lim                   :  lim
                                        x → 0  x  (1 +  x +  1 −  x )  x → 0  x  (1 +  x +  1 −  x )
   44   45   46   47   48   49   50   51   52   53   54