Page 54 - DECO403_MATHEMATICS_FOR_ECONOMISTS_HINDI
P. 54

VED1
          E\L-LOVELY-H\math2-1 IInd 21-10-11 IIIrd  24-1-12 IVth 21-4-12 Vth 20-8-12 VIth 10-9-12



          vFkZ'kkfL=k;ksa dk xf.kr




                   uksV                            lim      : lim      :
                                                  x →+ 0     x →− 0
                                                    1
                                                               1
                                vr%                 lim      :
                                                    x → 1
                                mnkgj.k 18- iQyu	     fuEu izdkj ls ifjHkkf"kr gS%
                                                                                 1
                                                                x,        0     x  <  2
                                                               
                                                               
                                                             
	  0,       x  =  1
                                                                             2
                                                                          1
                                                                1  − x,      < x    1
                                                                          2

                                lim       dk eku Kkr dhft,A
                                x
                                                               1  
                                gy %                  O 3  :      +  0 =    lim  f ( ) x
                                                               2    x →  1/2 +  0
                                                                    1           1            1     1
                                                           : lim f    +  h  :  lim 1 −   −  h  :  lim    −  h =  
                                                                        
                                                                                        
                                                              h→ 0    2    h→ 0    2    h→ 0    2    2
                                                                 1                       1  
                                                     3 O 3  : f    −  0 =    lim  fx     −  h 
                                                                               ( )  :  lim f
                                                                 2    x →  1/2 −  0  h→ 0    2  
                                                                   1    1
                                                           : lim    −  h =  
                                                              h→ 0    2    2
                                ∴                      O 3  : 3 O 3

                                                      1
                                                fx
                                vr%         lim ( ) =   .                                                   mÙkj
                                            x → 1/2   2
                                                                 iz'ukoyh 012


                                fuEufyf[kr dk eku Kkr dhft, %
                                                                                   x

                                      lim  %   8    ;                          lim  e − 1 .
                                      x → 0                                   x → 0  e x
                                          e x /2  − 1                              x − 1
                                                                                    3
                                      lim       .                                lim    .
                                      x → 0  x                                 x → 1  x − 1
                                         x −  4                                   e −−   x
                                           2
                                                                                   x
                                                                                      1
                                      lim      .                            #  lim         .
                                      x → 2  x −  2                           x → 0  x 2
                                  %   lim  y 2   tgk¡  y =  2  ax +  bx +  2  cx 3 .  '  lim  x 2
                                      x → 0  x                                x →∞ 1 +  x 2

                                         tanθ                                     x −  a 4
                                                                                   4
                                  +   lim                                  -  lim       .
                                                                                   2
                                      θ→ 0  θ                                 x → a  x − a 2
   49   50   51   52   53   54   55   56   57   58   59