Page 59 - DECO403_MATHEMATICS_FOR_ECONOMISTS_HINDI
P. 59

VED1
          E\L-LOVELY-H\math2-1 IInd 21-10-11 IIIrd  24-1-12 IVth 21-4-12 Vth 20-8-12 VIth 10-9-12


                                                                                           bdkbZ    lhek o lrrrk




          2-14 larr iQyuksa ij izes;  /$    "  
 3 
  
   
   
    
                              uksV

                    ;fn      vkSj      nksuksa fdlh fcUnq   : 
 ij larr gksa rks      ±       Hkh   : 
 ij larr
                   gksxkA

                    ;fn       vkSj       nksuksa fdlh fcUnq    : 
 ij larr gSa rks             Hkh
                     : 
 ij larr gksxkA
                     ;fn      fdlh fcUnq   : 
 ij larr gS vkSj   ,d fuf'pr okLrfod la[;k gS rks        Hkh
                     : 
 ij larr gksxkA
                                                                     f ()
                                                                       x
                    ;fn      vkSj      fdlh fcUnq   : 
 ij larr gS vkSj   
  ≠ 0 rks    Hkh   : 
 ij larr
                                                                     g () x
                  gksxkA
                                                        1
                    ;fn     9   : 
 ij larr gS vkSj  5
  ≠ 0 rks    Hkh   : 
 ij larr gksxkA
                                                       f () x
                    ;fn     9   : 
 ij larr gS rks 1     P Hkh   : 
 ij larr gksxkA

          mnkgj.k 1- fn[kkb, fd iQyu     	
	  	 	    	
	# ij larr gSA
          gy %    lim       :   :
                  x → 2

          vr% iQyu   :    ij larr gSA
                                 1
          mnkgj.k 2- iQyu     	
	     	  
	# ij vlarr gSA fl¼ dhft,A
                                x − 2


          gy %           ifjHkkf"kr ugha gS (gj 'kwU; gS)A
                                                                          Y
                lim       dk vfLrRo ugha gS (∞ osQ cjkcj gS)A
              x → 2
            :   dks NksM+dj vU; izR;sd fcUnq ij iQyu larr gSA vr%   :
                                                                          O
          ij iQyu vlkarR;    
  
  
   (  gSA                                   2       X

                                        x 2  − 4
          mnkgj.k 3- fn[kkb, fd iQyu     	
	     		
	# ij vlarr
                                         x  − 2

             
  
  
   
  gSA                                            Y
                                                                         4
          gy %          ifjHkkf"kr ugha gS (va'k vkSj gj nksuksa 'kwU; gSa)A
                lim      :
              x → 2

          vr% iQyu   :   vlarr gSA
                                                                         O      2      X
          mnkgj.k 3 esa vlkarR; dks nwj fd;k tk ldrk gS D;ksafd iQyu dks iqu%
                 2
                x − 4
               :      9   ≠  H ifjHkkf"kr djosQ      :
                x −  2
   54   55   56   57   58   59   60   61   62   63   64