Page 71 - DECO403_MATHEMATICS_FOR_ECONOMISTS_HINDI
P. 71

VED1
          E\L-LOVELY-H\math2-2 IInd 21-10-11 IIIrd  24-1-12 IVth 21-4-12 Vth 20-8-12 VIth 10-9-12


                                                                                           bdkbZ    lhek o lrrrk




             • ;fn fdlh iQyu      dh   : 
 ij nf{k.k i{k rFkk oke i{k nksuksa lhek,¡ fo|eku rFkk ,dleku gksa]  uksV
                rks iQyu      dh   : 
 ij lhek dk vfLrRo gksrk gSA
                                  f
                                    x
                               lim ( ) :  lim ( )f x  : ! (ekuyks)
                              x → a +    x → a −
             • ;gk¡ ! iQyu dh lhek dgykrh gS rFkk bls ge fuEu izdkj ls O;Dr djrs gSaµ
                                   f
                               lim ( )  : !
                                    x
                               x → a
             • gesa lhek Kkr djus osQ fy, nf{k.k i{k o oke i{k nksuksa lhek,¡ Kkr djuh pkfg, ijUrq ekè;fed Lrj
                ij ge lhek vf/dka'kr% lh/s gh Kkr djrs gSaA
             • va'k vkSj gj nksuksa dks mlosQ mHk;fu"B xq.ku[k.M tks 'kwU; ugha] ls Hkkx nsuk rqjUr lEHko u gks rks Js.kh
                izlkj   !" 
  
  
 
    
  ;k fdlh :ikUrj.k     
   ,    
  osQ ckn ;g fØ;k laHko gks
                ldrh gSA
             • ;fn fdlh iQyu      dk ys[kkfp=k  *  "/  [khpus ij tks oØ izkIr gksrk gSA og bl izdkj gks fd
                fdlh fcUnq   : 
 ij VwVrk      B  u gks] (Hkax u gksrk gks) rks iQyu      ml fcUnq ij lrr
                   
  
   
  dgykrk gSA
             • iQyu      fdlh foo`r vUrjky  
9    esa larr dgk tkrk gS ;fn ;g vUrjky  
9    esa   osQ lHkh
                ekuksa osQ fy, larr gSA
             • iQyu      fdlh lao`r vUrjky     
    
   	    <
9  = esa larr dgk tkrk gS] ;fn
                     ;g   osQ mu lHkh ekuksa osQ fy, larr gks ftlosQ fy, 
 L   L
                     lim       :    
                     lim       :
                                                           b
                      a
                    x →+  0                              x →− 0
          2-16 'kCndks'k  #  )

             • vuqØe  0 @  
   µØe] flyflykA

             • lrr  7 
  
    ( µyxkrkjA

          2-17 vH;kl&iz'u    	  )


                      x −  2  2ax +  a   2
                lim              
             1-  x → 0    x − a    dk eku Kkr djsaA                          (mÙkj %   )

                               a x  − b x   a
             2- fl¼ djsa fd  lim      = log e  .
                           x →0  x          b
                    x − 1
                     3
                lim
             3-  x→ 1  x − 1    dk eku Kkr djsaA                                (mÙkj % ))
                            1 , x ≠0
                           
                           
             4- iQyu      :  x           osQ lkarR; dk ijh{k.k djsaA         (mÙkj% vlarr)
                            3 ,  x =  0
                           
             5- n'kkZ,¡ fd      : 1   1    : - ij larr gSA
   66   67   68   69   70   71   72   73   74   75   76