Page 70 - DECO403_MATHEMATICS_FOR_ECONOMISTS_HINDI
P. 70

VED1
          E\L-LOVELY-H\math2-2 IInd 6-8-11 IIIrd  24-1-12 IVth 21-4-12 Vth 20-8-12 VIth  10-9-12



          vFkZ'kkfL=k;ksa dk xf.kr




                   uksV                      1   x
                                       lim 1 +     :
                                          
                                      x→∞    x 
                                           1
                                        
                      	                  8	             
  ∞
                                           e

                                           x
                                          a − b x
                                                     e
                                       lim       =  log ....
                                      x → 0  x
                                           b                   1                   a                 a
                                        
                                                        
  −
                                           a                   b                   b                 b

                                      ;fn      vkSj      nksuksa fdlh fcUnq   : 
 ij larr gksa rks      N     9   : 
 ij D;k gksxk\

                                        
  larr                vlarr               laxr          
  vlaxr

                                          e x  2  − 1
                                      lim  e x 2  + 1  =  ......
                                      x→∞

                                                                                                   1

                                                                                                   e


                                2-15 lkjka'k  % ""


                                  • tc iQyu dh lhek Lora=k pj osQ eku osQ nkfguh vksj ls izkIr dh tkrh gS rks mls iQyu dh nf{k.k
                                      i{k lhek   "0"1"  dgrs gSa vkSj nkfguh vksj osQ fy, /u fpÉ dk iz;ksx djrs gq, lkaosQfrd :i
                                      eas fuEu izdkj ls fy[krs gSaµ
                                      nf{k.k i{k lhek          :   
 ; -

                                                               : lim ( )f x  : !
                                                                 x → a +

                                  • tc iQyu dh lhek Lora=k pj osQ eku osQ ck;ha vksj ls izkIr dh tkrh gS rks mls oke i{kh; lhek
                                      dgrs gSa vkSj ck;ha vksj osQ fy,  8  fpÉ dk iz;ksx djrs gq, lkaosQfrd :i esa fuEu izdkj ls fy[krs
                                      gSaµ

                                      oke i{k lhek     :   
 8 -
                                                        :  lim ( )f x : !
                                                          x → a  −
                                  • nf{k.k i{k rFkk oke i{k lhek Kkr djus osQ fy, iQyu esa pj   osQ LFkku ij Øe'k%    ; ,  rFkk
                                         8 ,  izfrLFkkfir dhft,A
                                  • bl izdkj     ls izkIr iQyu   dks fn;s gq, fcUnq (eku yks 
) ls izfrLFkkfir dhft,A
                                  •   , → - ij iQyu dh lhek Kkr dhft, <vFkkZr~      ls izkIr iQyu dks mi;qZDr :i esa j[kdj , :

                                      - jf[k;s=A
   65   66   67   68   69   70   71   72   73   74   75