Page 97 - DECO403_MATHEMATICS_FOR_ECONOMISTS_HINDI
P. 97

VED1
          E\L-LOVELY-H\math4-1 IInd 21-10-11 IIIrd  24-1-12 IVth 21-4-12 Vth 20-8-12 VIth 10-9-12


                                                                                      bdkbZ    y?kqx.kdh; vodyu




                                                mÙkj                                               uksV
                                                               sin x

                <     ;   *   =             <
 
      
     *   ;    =
                                                                 x
                                    1                 x             


                   *     (log log x +  )       ;         +  log (1 +  ) x  
                                  log x               1 +  x        
                   8       8    ;    8        8    ;    8       8
                    1                               − 1
            #    (1 +  x 23/2            %   (1 +  ) x  3/ 2  (1 −  ) x  1/ 2
                      )

                                              2 +  3x −  4x −  2  3x 3


            '        *      
    * 
 ; 
       +   2(1 +  x ) (1 +  x 25/ 2
                                                            )


                                               x +  2  x +  1   1 −  x 2  
                  x
            -   e x x  (1 +  log x )           x −  2  x +  1      x +  4  x +  2  1   
                 x
                            e
                 (x −  a ) (x −  ) b   1  1   1    
                     x −  c      x −  a  +  x −  b  −  2(x −  ) c               *       *   *   8

                                             (x +  1) 2  x −  1   2  1       3     
                10 ⋅ 10 10  x  (log 10) 2       (x + 4) e x      x +  1  +  2 (x −  1)  −  x +  4  −  1   
                   x
                                                     3
                             e
          4-2 vuUr Jsf.k;ksa dk ;ksxiQy  % "



          mnkgj.k 1- ;fn   
	 x x x ...∞  rks fl¼ dhft, fd     dy  =  y 2
                                                    dx   1 − y logx


          gy %   :  x x x ...∞  :     D;ksafd  x x ...∞  :
          y?kqx.kd ysus ij        *   :     *
          nksuksa i{kksa dk   osQ lkis{k vodyu djus ij
                              1 dy       .  d  log x +  log x  dy
                                .
                               y dx   : y  dx            dx
                                          1        dy
                                      : y .  +  log x
                                          x        dx
                                         1       dy  y
          ∴                              −  log x   =
                                         y       dx  x
                                  dy       y 2
          vr%                   x     :                                         bfr fl¼e~A
                                  dx   1 −  y log x
                                                                          dy   cos x
          mnkgj.k 2- ;fn	  :  sin x+  sin x+  sin x+ ....   fl¼ dhft, fd	    =       "
                                                                          dx   2y  − 1
   92   93   94   95   96   97   98   99   100   101   102