Page 99 - DECO403_MATHEMATICS_FOR_ECONOMISTS_HINDI
P. 99
VED1
E\L-LOVELY-H\math4-1 IInd 21-10-11 IIIrd 24-1-12 IVth 21-4-12 Vth 20-8-12 VIth 10-9-12
bdkbZ y?kqx.kdh; vodyu
nksuksa i{kksa dk y?kqx.kd ysus ij uksV
* : *
iqu% nksuksa i{kksa dk y?kqx.kd ysus ij
* * : * ; * *
nksuksa i{kksa dk osQ lkis{k vodyu djus ij
1 . 1 dy 1 dy
log y ydx : y . x + dx (log ) + x 0
1 dy y 1 − y log . log y x dy y
∴ log x : ⇒ =
y log y dx x y log y dx x
dy y 2 log y
∴ : bfr fl¼e~A
dx x (1 − y log . log ) y
x
Lo&ewY;kadu
1- fjDr LFkkuksa dh iwfrZ djsa
/
B
µ
,sls iQyu ftudk vodyu y?kqx.kd ysdj Kkr fd;k tkrk gS mls --------- vodyu dgrs gSaA
m
log = logm − ........
n
n
m
log ( ) ........ log m
: * 7 ; * #
25
log = log 25 − log ........
12
iz'ukoyh 710
y?kq mÙkjh; iz'u
dy
1- ;fn
x + x + x + .... ∞ rks fl¼ dhft, fd (2y − 1) dx :
dy
2- ;fn
tan x + tan x + tan x + .... ∞ rks fl¼ dhft, fd (2y − 1) :
dx
x ....∞ dy y 2
3- ;fn
x x rks fl¼ dhft, fd x dx = 2 − y log x
x
x
4- ;fn
(sin )x (sin ) (sin )....∞ rks fl¼ dhft, fd dy = y 2 cot x
dx 1 − y log (sin ) x