Page 99 - DECO403_MATHEMATICS_FOR_ECONOMISTS_HINDI
P. 99

VED1
          E\L-LOVELY-H\math4-1 IInd 21-10-11 IIIrd  24-1-12 IVth 21-4-12 Vth 20-8-12 VIth 10-9-12


                                                                                      bdkbZ    y?kqx.kdh; vodyu




          nksuksa i{kksa dk y?kqx.kd ysus ij                                                       uksV
                                  *   :      *

          iqu% nksuksa i{kksa dk y?kqx.kd ysus ij
                              *    *    :     *   ;  *    *
          nksuksa i{kksa dk   osQ lkis{k vodyu djus ij

                            1  .  1 dy    1   dy
                          log y  ydx  : y .  x  +  dx  (log ) +  x  0

                       1         dy   y         1 −  y log . log y   x  dy  y
          ∴                log x    :    ⇒                      =
                      y log y    dx  x            y log y      dx  x

                                  dy         y 2  log y
          ∴                           :                                         bfr fl¼e~A
                                  dx   x (1 −  y log . log ) y
                                                 x
          Lo&ewY;kadu


          1- fjDr LFkkuksa dh iwfrZ djsa        
  /     
B
 µ
                 ,sls iQyu ftudk vodyu y?kqx.kd ysdj Kkr fd;k tkrk gS mls --------- vodyu dgrs gSaA

                      m 
                 log     =  logm −  ........
                      n 

                       n
                    m
                 log ( ) ........ log m
                          :   * 7 ;   * #
                      25 
                log      =  log 25 −  log ........
                      12 



                                           iz'ukoyh 710

          y?kq mÙkjh; iz'u
                                                                   dy
            1- ;fn   
	 x +   x +  x +  .... ∞   rks fl¼ dhft, fd  (2y − 1) dx   :


                                                                             dy

            2-  ;fn   
	 tan x +  tan x +  tan x +  .... ∞   rks fl¼ dhft, fd  (2y − 1)   :
                                                                             dx

                             x ....∞               dy       y 2
            3-  ;fn   
	  x  x    rks fl¼ dhft, fd  x  dx  =  2 −  y log x


                                   x
                                x
            4-  ;fn   
	(sin )x  (sin ) (sin )....∞  rks fl¼ dhft, fd   dy  =  y 2 cot x
                                                      dx   1 −  y log (sin ) x
   94   95   96   97   98   99   100   101   102   103   104