Page 100 - DECO403_MATHEMATICS_FOR_ECONOMISTS_HINDI
P. 100

VED1
          E\L-LOVELY-H\math4-1 IInd 6-8-11 IIIrd  24-1-12 IVth 21-4-12 Vth 20-8-12 VIth  10-9-12



          vFkZ'kkfL=k;ksa dk xf.kr




                   uksV
                                                                                           dy       1
                                  5-  ;fn   
  log x +  log x +  log x +  ... +  ∞   rks fl¼ dhft, fd   dx  =  x (2y − 1)



                                  6-  ;fn  y =  x +  2  1  1   rks fl¼ dhft,   dy  =  2xy 2 2  -
                                                   2
                                                  x +                       dx   1 +  y
                                                       2
                                                      x +  ......

                                4-3 vLi"V iQyu   "


                                ;fn   vkSj   osQ chp dksbZ ,slk lehdj.k fn;k gks ftls rqjUr   osQ fy, gy ugha fd;k tk losQ] rks   dks
                                  dk vLi"V iQyu   ,"        
    
  dgrs gSaA blosQ foijhr ;fn   dk eku   osQ :i esa Kkr fd;k
                                tk losQ] rks   dks   dk Li"V iQyu   !"        
    
  dgrs gSaA



                                 D;k vki tkurs gSa  vLi"V iQyu dk vodyuµfdlh vLi"V iQyu   ,"        
    
  ls
                                                 
 J
  dk eku Kkr djus osQ fy, fn;s gq, lehdj.k osQ izR;sd in dk   osQ lkis{k
                                                 vodyu djks rFkk fiQj 
 J
  osQ in ,d vksj djosQ mldk eku Kkr dhft,A



                                                               gy lfgr mnkgj.k

                                                                      dy

                                mnkgj.k 1- ;fn    	 	#          
	%  rks    Kkr dhft,A
                                                                      dx
                                gy % fn;k gS% 
   ;  ,   ;     : -


                                  osQ lkis{k vodyu djus ij
                                                             a .  d  (x 2 ) +  2h  d  (xy +  )  b .  d  (y 2 ) =  0
                                                                dx         dx         dx
                                                                        dy             dy
                                                                     
                                ;k                           2ax +  2h x  .  +  y  .1 +    2by  .  =  0
                                                                        dx             dx
                                                       dy
                                ;k            2(hx +  by )   : 8  
  ; ,
                                                       dx
                                                       dy       ax +  hy 
                                ∴                          : 8                                            mÙkj
                                                       dx       hx + by 

                                                                                    dy

                                mnkgj.k 2- ;fn	   	 	#   	 	   	 	#  	 	#  	 	 	
	% 	rks    Kkr dhft,A
                                                                                    dx
                                gy % fn;k gS] 
   ;  ,   ;     ;     ;     ;   : -


                                  osQ lkis{k vodyu djus ij
                                             d           d           d            d           d      d
                                                                               g
                                                                                           f
                                                      h
                                           a   (x 2 ) +  2 .  (xy +  )  b .  (y 2 )   +  2 .  () +  x  2 .  () +  y  ( ) =  c  0
                                            dx           dx         dx           dx          dx      dx
   95   96   97   98   99   100   101   102   103   104   105