Page 378 - DECO504_STATISTICAL_METHODS_IN_ECONOMICS_HINDI
P. 378
vFkZ'kkL=k esa lkaf[;dh; fof/;k¡
uksV 1
n = 5, p =3 vkus dh izkf;drk =
2
n – r
n
r liQyrkvksa dh izkf;drk] p(r) = C q p r
r
;ksx 12 osQoy ,d rjg ls gks ldrk gS (2 + 2 + 2 + 3 + 3)
vr%;ksx 12 gksus dh izkf;drk =2 liQyrkvksa dh izkf;drk
n
= C q n – 2 p 2
2
5 F 1I 5 − 2 1 F I 2
2 H K
2 H K
= C 2G J G J
1 F I F
1I
3
= 10 × G J G J 2
2 H K H
2K
10 5
= = .
32 16
mnkgj.k (Illustration) 7: pkj rk'k osQ iÙks fcuk iquLFkkZfir fd;s [khaps tkrs gSaA bldh D;k izkf;drk gS fd
pkjksa bDosQ gksaxs\
4 4 4 4 F I 4
1
G J
=
gy (Solution): vHkh"V izkf;drk = × × × 52 H 13K
52 52 52
mnkgj.k (Illustration) 8: 3 iklksa dks ,d lkFk isaQdus ij rhuksa iklksa esa le la[;k vkus dh izkf;drk gS\
gy (Solution): cuksZyh izes; osQ laosQrks esa] ;gk¡
n = 3, ,d ikls ij le la[;k vkuk = liQyrk
3 1
liQyrk dh izkf;drk] p = =
6 2
1
vliQyrk dh izkf;drk] q =
2
1 F I 3 1
2 H K
rhuksa iklksa ij le la[;k vkus dh izkf;drk] p(3) = p = G J = 8 .
3
mnkgj.k (Illustration) 9: ;fn gokbZ tgktksa osQ nsjh ls mM+us dk vuqikr 0.4 gks rks 10 gokbZ tgkrksa esa ls 4
gokbZ tgktksa osQ nsjh ls mM+us dh izkf;drk D;k gSA
gy (Solution): cuksZyh izes; osQ laosQrksa essa
,d gokbZ tgkt dk gh le; ij mM+uk = liQyrk
,d gokbZ tgkt dk nsjh ls mM+uk = vliQyrk
liQyrk dh izkf;drk] p = 1 – 0.4 = 0.6
vliQyrk dh izkf;drk] q = 0.4
n =10
4
vHkh"V izkf;drk p(4) = 10 C (0.4) (0.6) 6
4
10! F I F I 6
4
4
6
46!! H 10K H 10K
= G J G J
372 LOVELY PROFESSIONAL UNIVERSITY