Page 377 - DECO504_STATISTICAL_METHODS_IN_ECONOMICS_HINDI
P. 377

bdkbZμ26% izkf;drk dk fl¼kar% ifjp; ,oa mi;ksx



                                                                       1   1   1                      uksV
                      HT                       1                   pq =   ×  =
                                                                       2   2  4
                                                                       1   1   1
                      HH                       2                   pp =   ×  =
                                                                       2   2  4
            bl izdkj]
                                             1
                        0 liQyrk dh izkf;drk = q  =
                                          2
                                             4
                                                   1   1
                         1 liQyrk dh izkf;drk =  C  pq = 2 ×   =
                                         2
                                           1       4   2
                                              1
                                          2
                      2 liQyrkvksa dh izkf;drk = p  =
                                              4
            mnkgj.k (Illustration) 5: ,d flDosQ dks 4 ckj mNkyus ij (i) lHkh fpÙk vkus dh] (ii) 2 fpÙk vkSj 2 iV vkus
            dh rFkk (iii) 2 ;k 3 ckj fpÙk vkus dh izkf;drk crkb,A
            gy (Solution) : cuksZyh izes; osQ laosQru esa
                       1     1
            ;gka n = 4, p =   , q =
                       2     2
                                                       r
                                               n
            p(r) = n iz;klksa esa liQyrk vkus dh izkf;drk =  C q n – r  p  . r = 0, 1, 2, ..., n
                                                 r
                                                             1 F I  4  1
                                                             2 H K
             (i)       4  fpÙk (liQyrk) vkus dh izkf;drk p(4) = p  = G J =  16
                                                         4
                                                            1 F I
                                                                     1 F I
                                                          2G
                                                            2 H K
                                                                     2 H K
                                                        4
             (ii)     2 fpÙk (liQyrk) vkus dh izkf;drk] p(2) = C J 4 −  2  =G J 2
                         ¹vFkkZr~ 2 fpÙk rFkk 2 iV vkus dh izkf;drkº
                                                                 1I
                                                            1 F I F
                                                               2
                                                      =6 × G J G J 2
                                                            2 H K H
                                                                 2K
                                                           1   1   6   3
                                                      =6 ×   ×   =   =
                                                           4   4  16   8
                                                            1 F I
                                                                   1 F I
                                                          3G
                                                            2 H K
                                                                   2 H K
                                                        4
            (iii)     3 fpÙk (liQyrk) vkus dh izkf;drk] p(3) = C J  4 −  3  G J 3
                                                            1 F I F 1I  3  4  1
                                                      =4 × G J G J = 2K  16  =  4
                                                            2 H K H
                            2 ;k 3 ckj fpÙk vkus dh izkf;drk = p(2) + p(3)
                                                         6    4   10  5
                                                      =    +    =    =
                                                        16   16   16  8
            mnkgj.k (Illustration) 6:  5 ,sls flDosQ mNkys x;s ftuosQ i`"Bksa ij 2 vkSj 3 fy[kk gSA ;ksx 12 izkIr djus dh
            D;k izkf;drk gS\
                                       n
                                                                    r
                                              n
                                                            n
                                           n
                                                                 n – r
            gy (Solution): cuksZyh izes; (q + p)  = q  +  C  q n – 1  p + ...... +  C q   p  + ... + p r
                                                              r
                                                1
            osQ vuqlkj ;gka
                                                LOVELY PROFESSIONAL UNIVERSITY                                   371
   372   373   374   375   376   377   378   379   380   381   382