Page 377 - DECO504_STATISTICAL_METHODS_IN_ECONOMICS_HINDI
P. 377
bdkbZμ26% izkf;drk dk fl¼kar% ifjp; ,oa mi;ksx
1 1 1 uksV
HT 1 pq = × =
2 2 4
1 1 1
HH 2 pp = × =
2 2 4
bl izdkj]
1
0 liQyrk dh izkf;drk = q =
2
4
1 1
1 liQyrk dh izkf;drk = C pq = 2 × =
2
1 4 2
1
2
2 liQyrkvksa dh izkf;drk = p =
4
mnkgj.k (Illustration) 5: ,d flDosQ dks 4 ckj mNkyus ij (i) lHkh fpÙk vkus dh] (ii) 2 fpÙk vkSj 2 iV vkus
dh rFkk (iii) 2 ;k 3 ckj fpÙk vkus dh izkf;drk crkb,A
gy (Solution) : cuksZyh izes; osQ laosQru esa
1 1
;gka n = 4, p = , q =
2 2
r
n
p(r) = n iz;klksa esa liQyrk vkus dh izkf;drk = C q n – r p . r = 0, 1, 2, ..., n
r
1 F I 4 1
2 H K
(i) 4 fpÙk (liQyrk) vkus dh izkf;drk p(4) = p = G J = 16
4
1 F I
1 F I
2G
2 H K
2 H K
4
(ii) 2 fpÙk (liQyrk) vkus dh izkf;drk] p(2) = C J 4 − 2 =G J 2
¹vFkkZr~ 2 fpÙk rFkk 2 iV vkus dh izkf;drkº
1I
1 F I F
2
=6 × G J G J 2
2 H K H
2K
1 1 6 3
=6 × × = =
4 4 16 8
1 F I
1 F I
3G
2 H K
2 H K
4
(iii) 3 fpÙk (liQyrk) vkus dh izkf;drk] p(3) = C J 4 − 3 G J 3
1 F I F 1I 3 4 1
=4 × G J G J = 2K 16 = 4
2 H K H
2 ;k 3 ckj fpÙk vkus dh izkf;drk = p(2) + p(3)
6 4 10 5
= + = =
16 16 16 8
mnkgj.k (Illustration) 6: 5 ,sls flDosQ mNkys x;s ftuosQ i`"Bksa ij 2 vkSj 3 fy[kk gSA ;ksx 12 izkIr djus dh
D;k izkf;drk gS\
n
r
n
n
n
n – r
gy (Solution): cuksZyh izes; (q + p) = q + C q n – 1 p + ...... + C q p + ... + p r
r
1
osQ vuqlkj ;gka
LOVELY PROFESSIONAL UNIVERSITY 371