Page 372 - DECO504_STATISTICAL_METHODS_IN_ECONOMICS_HINDI
P. 372

vFkZ'kkL=k esa lkaf[;dh; fof/;k¡




                    uksV            2-  izkf;drk dh vuqHkfod vFkok lkaf[;dh; fopkjèkkjk (Empirical statistical Approach of Probability)
                                    3-  izkf;drk dh vkRepsruk vFkok fo"k;xr fopkjèkkjk  (Personalistic of Subjective Approach of
                                        Probability)
                                    4-  izkf;drk dh lwfDr lacaèkh vFkok vkèkqfud fopkjèkkjk  (Axiomatic or Morden Approach to
                                        Probability)
                                  1- izkf;drk dh ijaijkoknh vFkok xf.krh; fopkjèkkjk
                                  (Classical or Mathematical Approach of Probability)

                                  izkf;drk osQ vFkZ ,oa ekiu osQ lacaèk esa ;g lcls ljy vkSj izkphu fopkjèkkjk gS vkSj bl vkèkkj ij fudkyh
                                  xbZ izkf;drk dks roZQiw.kZ ;k Lo;afl¼ izkf;drk Hkh dgrs gSaA Laplace us fy[kk gS fdμ¶vuqowQy ?kVukvksa dk
                                  leku lEHkkouk okyh lEiw.kZ ?kVukvksa osQ lkFk vuqikr gh izkf;drk gSA¸

                                                ?kVuk ?kVus dh izkf;drk =

                                  Example: ,d FkSys esa 4 yky rFkk 5 lisQn xsan gS rks FkSys esa ls ,d xsan fudkyus dh n'kk esa mlosQ yky gksus
                                  dh izkf;drk 4/9 gksxhA D;ksafd vuqowQy ifjfLFkfr;ksa dh la[;k 4 gS rFkk oqQy lEHkkfor ifjfLFkfr;k¡ (FkSys esa
                                  lHkh xsnksa dh la[;k) 9 gSA
                                  ijEijkoknh fopkjèkkjk osQ vkèkkj ij xf.krh; :i esa izkf;drk dh xf.krh; ifjHkk"kk Hkh nh tkrh gSA mlosQ
                                  vuqlkj ;fn dksbZ ?kVuk m ckj gks ldrh gS vkSj n ckj ugh gks ldrh rFkk lHkh ?kVuk leku :i ls ?kfVr gksus
                                                                     m                               n
                                  okyh gS rks ?kVuk osQ ?kVus dh izkf;drk p =    rFkk ?kVuk u gksus dh izkf;drk q =   A ;g è;ku
                                                                   m +  n                          m +  n
                                  jgs fd p + q = 1 vFkkZr p = 1 – q vFkok q = 1 – p gksrk gSA
                                  Example: ,d iklk isQdus ij mlosQ Åijh Hkkx ij 3 ;k 4 dk vad vkus dh izkf;drk Kkr djuh gS rks  3

                                  ;k 4 nks ?kVuk;s gS] ftUgsa m dgk tk;sxkA blosQ vfrfjDr 1, 2, 5 vkSj 6 vFkkZr ?kVuk;sa gS ftUgsa n dgsaxsA bl
                                                                    2     2  1
                                  vkèkkj ij 3 ;k 4 vad vkus dh izkf;drk =   =  =   A
                                                                   2 +  4  6  3

                                  2- izkf;drk dh vuqHkkfod vFkok lkaf[;dh; fopkjèkkjk
                                  (Empirical or Statistical Approach of Probability)
                                  izkf;drk dh bl fopkjèkkjk osQ vkèkkj ij x.kuk dh xbZ fd izkf;drk dks ¶lkis{k vko`fÙk izkf;drk¸ (Relaive
                                  Exequency Probability) vFkok mÙkjorhZ izkf;drk (Posterior Probability) Hkh dgrs gSaA
                                  bl fopkjèkkjk osQ vkèkkj ij miyCèk leadksa ;k vko`fÙk;ksa vFkok vuqHkoks osQ vkèkkj ij izkf;drk dh x.kuk dh
                                  tkrh gSA
                                  Example: fiNys o"kZ osQ vk¡dM+ksa esa ik;k x;k fd yxHkx 10% mRikn ?kfV;k fdLe dk curk gSA pkyw o"kZ esa
                                  500 oLrqvksa dk mRiknu gksuk gS rks fiNys leadksa osQ vkèkkj ij ;g dgk tk ldrk gS fd 500 × 10/100 =
                                  50% oLrq;sa ?kfV;k fdLe dh gksxhA

                                  bl fopkjèkkjk osQ vuqlkj ljy lw=k esa izkf;drk dh x.kuk dks fuEu izdkj ls j[kk tk ldrk gSμ
                                                                r
                                                              p =
                                                                n
                                                             r = Relative frequency
                                                              n = Number of items
                                  Example: ,d e'khu }kjk cuk;s x;s 1000 mRiknksa esa 40 ?kfV;k fdLe osQ gS rks ?kfV;k fdLe osQ leku dh



        366                               LOVELY PROFESSIONAL UNIVERSITY
   367   368   369   370   371   372   373   374   375   376   377