Page 201 - DMTH401_REAL ANALYSIS
P. 201

Unit 15: Uniform Convergence of Functions




                                                                    
          Hence, for any given  e >  in  pointwise definition it suffices to take  N  = N  taken from uniform  Notes
                              0
                                                                     e
          definition.
          15.2 Testing Pointwise and Uniform Convergence

          1.   Test the pointwise convergence.
          2.   If there is no pointwise convergence, there is no uniform convergence.
          3.   If f  converges pointwise to some f test the uniform convergence to f.
                 n

                                                                                  x
                                                                               ì 0, ¹  1
                                         n
                                     x
                                          .
                 Example: Let  =I  [0,1], f n ( ) = x  We see that  f  converges pointwise to  ( ) = í  .
                                                                           f x
                                                      n
                                                                                  x
                                                                               î 1, =  1
          Does it converge uniformly to f on I? the answer is no.
          Proof: Negation of uniform convergence is
                                                            x
                                                       x
                                                x
                                          n
                                $e >  0"N  Î $ ³ N  $ Î  : I  f  ( ) - f  ( ) ³ e
                                                      n
                 1
                                                                     .
                                                           x
                                                                x
          Take  e =  . Then  "N  Î   we have to find n and x such that  f n ( ) - f  ( ) ³ e  Take  =n  N .  Now we
                 4
                                     æ  1  ö
          want to find x. If we take any  x  Î  , 1  we get
                                           ÷
                                     è  4  ø
                                     ç n
                                                               1
                                                 x
                                            x
                                x
                              f  ( )- f  ( ) = f  ( )- f  ( ) = x  N  - 0 = x N ³  =  . e
                                     x
                               n          N
                                                               4
                           Figure 15.3: Suitable x’s (green) for function f (x) = x  2
                                                                2
                           (red). Limit function f is blue, e-tube and f in yellow.






                                                           n
                                               ì 1,  x  Î  [0, 1/ ]
                 Example:  Let  I  =  [0, 1]   and  f x       . f   converges  pointwise  to
                                           ( )= í
                                                                 n
                                           n
                                                          n
                                               î 0, x  Î  [1, 2/ , 1]
                ì 1,  x  =  0
          f(x) =   í         but does not converge uniformly to f.
                î 0, otherwise
                                                  x
          Proof: If  =x  0  then  f n (0) 1. If  x Î (0,1)  then  f  n ( )  0. Therefore  f  n   f  pointwise. To prove
          that  f  does not converge to f uniformly fix  e =  1/2.  Then  "N  Î    choose n = N and  x  =  1/2 .
                                                                                    N
               n
          Then

                                           LOVELY PROFESSIONAL UNIVERSITY                                   195
   196   197   198   199   200   201   202   203   204   205   206