Page 202 - DMTH401_REAL ANALYSIS
P. 202

Real Analysis




                    Notes
                                                                    æ  1 ö  æ  1 ö      1
                                                       f  ( )- f ( ) = f  ç  ÷  - ç f  ÷  =  1 0 ³  = e
                                                                                   -
                                                         x
                                                              x
                                                       n           N
                                                                            2 ø
                                                                     2 ø
                                                                    è N    è N          2
                                                                                  n
                                                                    æ  0,   x Î [1/ , 1]ö
                                                                 x
                                          Example: Let  =I  [0,1]  and  f n ( ) =  ç  2  ÷  . Then  f  does not converge to
                                                                                             x
                                                                                   n
                                                                       -
                                                                    è n n x  x Î [0,1/ ]ø
                                   any f pointwise nor uniformly.
                                                                 .
                                   Proof: Look  at  x  =  0.  Here  f n (0) ¥   Therefore,  f   does not converge  pointwise  to any  f.
                                                                             n
                                   Contrapositive tells us that  f  does not converge uniformly to any f.
                                                          n
                                          Example: Let  =I  [0,1]  and  f  be from Figure 15.4
                                                                n
                                                                      ¥
                                          Figure 15.4: First 5 element of  { f  }   on [0, 1]. f  starts at 0, has value of the
                                                                     n n = 1     n
                                           peak equal of n at 1/2n and then returns to 0 at 1/n, value of the rest of 0.



















                                                                                          é 1 ù
                                                         =
                                   Proof: Fix  x  =  0.  Here  f n (0) 0   0. Now look at  x  Î (0,1].  Put  N  =  ê ú +  1.  Then  " ³n  N  : n  ³
                                                                                           x
                                                                                          ë û
                                                                          x
                                     x
                                   1/ Þ x  ³  1/n  and from image we can see that  f n ( )  0. Let us prove that  f  does not converge
                                                                                               n
                                   uniformly to the zero function. Take  e = 1.  Then  "N  Î   choose n = N and x = 1/2N. We have
                                                   f  ( ) - f  ( ) = f  (1/2 )- f  (1/2 ) = N  -  0 = N  ³  1 = e .
                                                     x
                                                                            N
                                                          x
                                                                    N
                                                    n          N
                                          Example: Let I = [0, 1] and  f  to from Figure 15.5. Then  f  converges to the zero function
                                                               n                      n
                                   pointwise and uniformly.
                                                                                     =
                                                                                   x
                                                                                  f
                                   Proof:  Pointwise  convergence  is  clear  since  " >n  1/ : ( ) 0   0.  For  proof  of  uniform
                                                                               x
                                                                                  n
                                                                                         n
                                                                      +
                                                                     e
                                   convergence of every  e >  choose  N  =  [1/ ] 1.  Then  " ³n  N  and  " Î [0,1]  we have
                                                       0
                                                              x
                                                                            n
                                                                   x
                                                            f n ( )- f  ( ) = f  n  £  1/ £  1/N  £  . e
          196                               LOVELY PROFESSIONAL UNIVERSITY
   197   198   199   200   201   202   203   204   205   206   207