Page 237 - DMTH401_REAL ANALYSIS
P. 237

Unit 19: Arzelà’s Theorem and Weierstrass Approximation Theorem




          Definition 1: Define                                                                  Notes
                                       æ  n ö
                                            k
                                p (x) =  ç ÷  x (1 – x) ,  " n Î  and 0  k  n.
                                                  n–k
                                  kn   è  k ø
          Note that, p (x) becomes a probability mass function of binomial distribution with probability
                    kn
          of successful trial equal to x if x Î [0, 1].
                                                     n
          Lemma: (a)  " n Î :  å n k 0  p (x) = 1, (b)  " n Î :  å k 0  k pkn (x) = nx, (c)  " n Î :  å n k 0  (k – nx) 2
                                                     =
                                                                              =
                              =
                                 kn
          p (x) = nx(1 – x).
           kn
          Proof: (a) If x Î [0, 1] the equality follows from normalisation of probability distribution.  In
          general
                                        n  æ  n ö
                                                 -
                                              k
                                    n
                               (a + b)  = å ç ÷  a b n k ,
                                       k 0 k ø
                                        = è
               therefore
                                           n
                               n        n æ ö
                                              k
                                                               n
                               å p (x) = å  ç ÷  x (1 – x) n – k  = (x + 1 – x)  = 1.
                                        = è
                               =
                              k 0  kn  k 0 kø
          (b)  If x Î [0, 1], we can define a random variable Y  the number of heads observed on unfair
                                                    n,x
               x-coin tossed n-times. Then
                                       æ  n ö
                                            k
                             (Y = k) =  ç ÷  x (1 – x) n – k  = p (x).
                                n,x    è  k ø          kn
               Moreover, we find the following relation with (b)
                                        n
                                [Y ] = å k (x) = nx.
                                   n,x    p kn
                                       k 0
                                        =
               In general
                                                 -
                                                                 -
                      æ  n ö    n!             (n 1)!          æ  n 1ö
                     k  ç ÷   = k    = n                    = n ç   ÷  ,
                                                    -
                      è  k ø  k!(n k)!  (k - 1)!((n 1) (k -  1))!  è  k -  1 ø
                                 -
                                                 -
               so
                               n        n  æ nö          n  æ  n -  1ö
                                               k
                                                                    k
                               å k (x) = å  k  x (1 – x) n – k  =  å  n  x (1 – x) n – k  =
                                           k
                                                                1
                                 p kn      ç ÷           k 0 è ç  k - ø ÷
                              k 0      k 0 è ø           =
                               =
                                        =
                                        n  æ  n -  1ö          n æ  n -  1ö
                                                  k
                                     = å  n  ç  ÷  x (1 – x) n – k  = nx å  ç  ÷  x k – 1 (1 – x) n – k  =
                                               1
                                                                    1
                                                               = è
                                       k 1 è  k - ø           k 1 k - ø
                                        =
                                                1
                                          -
                                           æ
                                         n 1 n - ö
                                                   i
                                     = nx å ç    ÷  x (1 – x) n – 1 – i  = nx(x + 1 – x) n – 1  = nx.
                                         i 0 è  i  ø
                                          =
          (c)  If x Î [0, 1], we can rewrite the formula as
                         n
                                 2
                Var(Y ) = å (k – nx) p (x) = nx (1 – x).
                    n,x           kn
                         k 0
                          =
               In general
                                 æ  n ö             (n -  2)!            æ  n -  2ö
                           k(k – 1)  ç ÷   = n(n – 1)            = n(n – 1)    ,
                                 è  k ø      (k -  2)!((n -  2) (k -  2))!  ç è  k - ø ÷
                                                                             2
                                                         -
                                           LOVELY PROFESSIONAL UNIVERSITY                                   231
   232   233   234   235   236   237   238   239   240   241   242