Page 238 - DMTH401_REAL ANALYSIS
P. 238

Real Analysis




                    Notes                         n             n       æ  n ö
                                                  å k(k – 1)p (x) = å k(k – 1)  ç ÷  x (1 – x) n – k
                                                                             k
                                                 k 0      kn    k 0     è  k ø
                                                  =
                                                                 =
                                                                n       æ n -  2ö
                                                                                k
                                                              = å n(n – 1)  ç  ÷  x (1 – x) n – k
                                                                            2
                                                                k 2     è k - ø
                                                                 =
                                                                        n æ  n -  2ö
                                                                      2
                                                              = n(n – 1)x å     x k – 2 (1 – x) n – k
                                                                          ç
                                                                              2
                                                                       k 2 k - ø ÷
                                                                        = è
                                                                              2
                                                                          æ
                                                                        -
                                                                       n 2 n - ö
                                                                      2          i    n – 2 – i    2
                                                              = n(n – 1)x å ç  ÷  x (1 – x)   = n(n – 1)x .
                                                                       i 0 è  i  ø
                                                                        =
                                   Hence
                                                 n              n
                                                                   2
                                                 å (k – nx) p (x) = å (k  – 2knx + n x )p (x)
                                                                             2 2
                                                        2
                                                                 =
                                                 =
                                                k 0       kn    k 0             kn
                                                                n
                                                                                    2 2
                                                              = å (k(k – 1) + k – 2knx + n x )p (x)
                                                                                        kn
                                                                 =
                                                                k 0
                                                                      2
                                                                                    2
                                                              = n(n – 1)x  + nx – 2nxnx – n x
                                                                              2 2
                                                                                   2 2
                                                                      2
                                                                2
                                                               n x – nx  + nx – 2n x  + n x  = nx(1 – x).
                                                                                          f
                                   Definition 2: For any f: [0, 1]   define its Bernstein polynomials  B (x) such that
                                                                                          n
                                                                n  æ k ö
                                                          f
                                                                  f
                                                         B (x)  = å ç ÷  p (x).
                                                          n             kn
                                                                k 0 è ø
                                                                    n
                                                                 =
                                   Theorem 2: Weierstrass Approximation Theorem, special case
                                                                                      f
                                   Let f be a real-valued function on [0, 1]. If f is continuous then  B   f uniformly.
                                                                                      n
                                   Proof: We want
                                                                                  f
                                                    " > 0 N Î  n  N  x Î [0, 1] : | B (x) – f(x)| < .
                                                                      "
                                                               "
                                                                                  n
                                   Let  > 0 be given. Since f is uniformly continuous on [0, 1]
                                                    > 0  x,y"  Î [0, 1] : |x – y| <  |f(x) – f(y)| < /2.
                                   Using this fact we can estimate
                                                                 n  æ k ö        n
                                                     f
                                                   |B (x) – f(x)|=  å ç ÷  p (x) f(x) å  p (x)
                                                                            -
                                                                   f
                                                     n
                                                                                    kn
                                                                k 0 è ø  kn     
                                                                    n
                                                                                k 0
                                                                                 =
                                                                 =
                                                                 n                    n
                                                                         -
                                                                                              -
                                                              = å  (f(k/n) f(x))p (x)   å  (f(k/n) f(x) p (x)
                                                                               kn
                                                                                                    kn
                                                                                      =
                                                                k 0                  k 0
                                                                 =
                                                                  n                      n
                                                                                                  -
                                                                           -
                                                              =  å   (f(k/n) f(x) p (x) +  å  (f(k/n) f(x) p (x)
                                                                                 kn
                                                                                                        kn
                                                                k:  k x- <            k:  k x- 
                                                                 n                      n
                                                                    n               n
                                                                                         ×
                                                                <   å  p (x) 2 f     å  1 p (x).
                                                                             +
                                                                         kn
                                                                                           kn
                                                                 2  k:  k x- <  sup  k:  k x- 
                                                                    n               n
                                   We used estimate
                                                       |f(k/n) – f(x)|  |f(k/n)| +|f(x)|  2||f|| .
                                                                                        sup
                                   Now observe that in the second sum we have the following condition on k
          232                               LOVELY PROFESSIONAL UNIVERSITY
   233   234   235   236   237   238   239   240   241   242   243