Page 242 - DMTH401_REAL ANALYSIS
P. 242

Real Analysis




                    Notes
                                          Example: Let f(x) = x on  [0,  1] and  {f  }  ¥  . We get Fourier coefficients  a   = x,  f   =
                                                                         n n 1                       n      n
                                                                           =
                                                  2  n
                                    1         æ  1 ö  2  1  . Therefore, we can compute Fourier series for f(x) = x which is
                                     f
                                   0 ò  x (x)dx = - ç è  2 ø  2  = -  2  n 1
                                                n ÷
                                                          +
                                         1
                                   -å ¥ n 1  f  n (x) .
                                      =
                                          +
                                        2 n 1
                                   Self Assessment
                                   Fill in the blanks:
                                                                                 f
                                   1.  For any f: [0, 1]   define its ..................................  B (x) such that
                                                                                 n
                                                                n  æ k ö
                                                          f
                                                                  f
                                                         B (x)  = å ç ÷  p (x).
                                                          n             kn
                                                                k 0 è ø
                                                                    n
                                                                 =
                                   2.  Let f be a real-valued function on [0, 1]. If f is continuous then ............................ .
                                   3.  Define the two—norm ||· ||  on f Î[a, b] such that ......................... .
                                                             2
                                                                                ¥
                                   4.  A collection of Riemman integrable functions  {f n n 1   on [a, b] is called an .........................
                                                                               }
                                                                                 =
                                                 b
                                                      f
                                        f  ,f  =  ò f  (x) (x)dx = 0, " m ¹  n.
                                         m  n   a  m   n
                                   19.3 Summary
                                      Let I   and f be a real-valued function on I. We say that f is uniformly continuous on I if
                                                   "  > 0  > 0  " x, y Î I : |x – y| <   |f(x) – f(y)| < .
                                       Also remind, that a continuous function on [a, b] is always uniformly continuous.
                                                                                                n
                                                                        n
                                                                                                        2
                                       " n Î :  å  n k 0  p (x) = 1, (b)  " n Î :  å k 0  k pkn (x) = nx, (c)  " n Î :  å k 0  (k – nx) p (x) =
                                                  =
                                                                                                 =
                                                                        =
                                                                                                          kn
                                                     kn
                                       nx(1 – x).
                                       If x Î [0, 1], we can define a random variable Y  the number of heads observed on unfair
                                                                             n,x
                                       x-coin tossed n-times. Then
                                                                    æ  n ö
                                                                         k
                                                          (Y = k) =   ç ÷  x (1 – x)  n – k  = p (x).
                                                             n,x    è  k ø          kn
                                       Moreover, we find the following relation with (b)
                                                                       n
                                                               [Y ] =  å k (x) = nx.
                                                                  n,x     p kn
                                                                       k 0
                                                                       =
                                      For any f, g Î [a, b] define inner product of f and g .,. such that
                                                                       b
                                                                f, g =  ò  f(x)g(x)dx.
                                                                       a
                                      Recall from Linear Algebra that the inner product space is finite-dimensional vector space
                                       V equipped with mapping ·,·: V  V  (or ).
                                   19.4 Keyword
                                   Fourier Series: For any f, g Î [a, b] define inner product of f and g .,. such that
                                                                b
                                                          f, g = ò  f(x)g(x)dx.
                                                                a



          236                               LOVELY PROFESSIONAL UNIVERSITY
   237   238   239   240   241   242   243   244   245   246   247