Page 15 - DMTH402_COMPLEX_ANALYSIS_AND_DIFFERENTIAL_GEOMETRY
P. 15
Complex Analysis and Differential Geometry
Notes 6. Sketch the set of points satisfying
(a) |z 2 + 3i| = 2 (b) |z + 2i| 1
(c) Re(z i) 4 (d) |z 1 + 2i| = |z + 3 + i|
(e) |z + 1| + |z 1| = 4 (f) |z + 1| |z 1| = 4
7. Write in polar form re :
i
(a) i (b) 1 + i
(c) 2 (d) 3i
(e) 3 3i
8. Write in rectangular formno decimal approximations, no trig functions:
(a) 2e i3 (b) e i100
(c) 10e i/6 (d) 2 e i5/4
9. (a) Find a polar form of (1 + i) (1 i 3).
(b) Use the result of a) to find cos 7 and sin 7 .
12 12
10. Find the rectangular form of (1 + i) .
100
11. Find all z such that z = 1. (Again, rectangular form, no trig functions.)
3
12. Find all z such that z = 16i. (Rectangular form, etc.)
4
Answers: Self Assessment
1. modulus 2. z = x iy
3. imaginary part 4. complex numbers
1.7 Further Readings
Books Ahelfors, D.V. : Complex Analysis
Conway, J.B. : Function of one complex variable
Pati, T. : Functions of complex variable
Shanti Narain : Theory of function of a complex Variable
Tichmarsh, E.C. : The theory of functions
H.S. Kasana : Complex Variables theory and applications
P.K. Banerji : Complex Analysis
Serge Lang : Complex Analysis
H.Lass : Vector & Tensor Analysis
Shanti Narayan : Tensor Analysis
C.E. Weatherburn : Differential Geometry
T.J. Wilemore : Introduction to Differential Geometry
Bansi Lal : Differential Geometry.
8 LOVELY PROFESSIONAL UNIVERSITY