Page 15 - DMTH402_COMPLEX_ANALYSIS_AND_DIFFERENTIAL_GEOMETRY
P. 15

Complex Analysis and Differential Geometry




                    Notes          6.  Sketch the set of points satisfying
                                       (a)  |z – 2 + 3i| = 2         (b)  |z + 2i|  1

                                       (c)  Re(z i)   4             (d)  |z – 1 + 2i| = |z + 3 + i|
                                                 
                                       (e)  |z + 1| + |z – 1| = 4    (f)  |z + 1| – |z – 1| = 4
                                   7.  Write in polar form re :
                                                          i
                                       (a)  i                        (b)  1 + i

                                       (c)  –2                       (d)  –3i
                                       (e)    3  3i

                                   8.  Write in rectangular form—no decimal approximations, no trig functions:
                                       (a)  2e i3                   (b)  e i100
                                       (c)  10e i/6                 (d)   2 e i5/4

                                   9.  (a)  Find a polar form of (1 + i)  (1 i 3).

                                       (b)  Use the result of a) to find cos    7    and sin    7   .
                                                                      12        12 
                                   10.  Find the rectangular form of (1  + i) .
                                                                    100
                                   11.  Find all z such that z  = 1. (Again, rectangular form, no trig functions.)
                                                        3
                                   12.  Find all z such that z  = 16i. (Rectangular form, etc.)
                                                        4
                                   Answers: Self  Assessment

                                   1.  modulus                            2.   z  = x – iy
                                   3.  imaginary part                     4.  complex  numbers

                                   1.7 Further Readings





                                   Books       Ahelfors, D.V. : Complex Analysis
                                               Conway, J.B. : Function of one complex variable
                                               Pati, T. : Functions of complex variable
                                               Shanti Narain : Theory of function of a complex Variable
                                               Tichmarsh, E.C. : The theory of functions
                                               H.S. Kasana : Complex Variables theory and applications
                                               P.K. Banerji : Complex Analysis
                                               Serge Lang : Complex Analysis
                                               H.Lass : Vector & Tensor Analysis
                                               Shanti Narayan : Tensor Analysis
                                               C.E. Weatherburn : Differential Geometry
                                               T.J. Wilemore : Introduction to Differential Geometry
                                               Bansi Lal : Differential Geometry.



          8                                 LOVELY PROFESSIONAL UNIVERSITY
   10   11   12   13   14   15   16   17   18   19   20