Page 150 - DMTH402_COMPLEX_ANALYSIS_AND_DIFFERENTIAL_GEOMETRY
P. 150

Unit 13: Schwarz's Reflection Principle




          Remark. The circles C  and C  touch internally at z = –1 which is a singularity for both f (z) and  Notes
                                  2
                                                                                1
                            1
          f (z)  i.e. z = –1  is a  singularity of  the complete analytic function whose two representations
           2
          (members) are f (z) & f (z).
                       1
                             2
                 Example: Show that the functions defined by the series
                           1 + az + a  z  +…..
                                     2
                                   2
                             1   (1 a)z  (1 a) z 2
                                             2
                                   
                                          
          and                         
                            1 z  (1 z) 2  (1 z) 3
                                   
                                           
                             
          are analytic continuations of each other.
                                                                 1
          Solution. The first power  series represents the function f (z) =   1 az    and has  the circle of
                                                          1
                                                                 
                                              1                                 1
          convergence C  given by |az| = 1 i.e. |z| =  |a| .  The only singularity is at the point z =  (a  0)
                                                                                a
                      1
          on the boundary of the circle. The second series has the sum function
                                  1   (1 a)z  (1 a) z 2
                                                  2
                                        
                                                
                           f (z) =  1 z   (1 z) 2    (1 z) 3  .....
                            2
                                                
                                  
                                        
                                                  
                                          
                                                        2
                                   =   1   1      1 a   z     1 a   2  z .........  
                                          
                                                  
                                  
                                 1 z      1 z     1 z    
                                                                
                                   =   1  1                      1 a   z  1
                                 1 z     1 a                  1 z 
                                         
                                                                
                                  
                                     1     z
                                         
                                         1 z 
                                  1   1 z    1
                                       
                                   =   .  
                                 1 z 1 az   1 az
                                             
                                      
                                  
          and has the circle of convergence C  given by
                                       2
                            z(1 a)  1  i.e. |z(1 – a)| = |1 – z|
                               
                             1 z   
                               
          i.e.             |z(1-a)|  = |1-z| 2
                                  2
          i.e.             z z (1-a)  =  (1-z) , where a is assumed to be real and a > 0
                                 2
          i.e.             z z (1-a)  = 1 -(z + z ) + z z
                                 2
          i.e.             (x  + y ) (1+a  - 2a) = 1 -2x + x  + y , z = x + iy
                                                      2
                                                  2
                                2
                             2
                                     2
          i.e.             (x  + y ) a (a-2) = 1 -2x
                                2
                             2
                                    2x      1
          i.e.             x  + y  -            0
                                2
                            2
                                  a(2 a)  a(2 a)
                                             
                                     
                                 1   2          1 a  2
                                                   
                                             2
          i.e.              x         (y 0)      
                                          
                                  
                                                    
                              a(2 a)           a(2 a)  
                                           LOVELY PROFESSIONAL UNIVERSITY                                  143
   145   146   147   148   149   150   151   152   153   154   155