Page 260 - DMTH402_COMPLEX_ANALYSIS_AND_DIFFERENTIAL_GEOMETRY
P. 260

Unit 21: New Spherical Indicatrices and their Characterizations




          In order to determine the Bishop frame of the curve  = (s), let us form             Notes

                                              s  b   bs
                                         (s) =   2   ds   2  .
                                              0  c   c
          Since, we can write the transformation matrix


                                                       
                                         1   0      0  
                                                        
                                    T      bs     bs   T 
                                                        
                                          cos  2  sin  2   
                                    N 
                                        0  c      c      M 1  ,
                                             bs     bs  M 
                                    B
                                         sin   cos     2 
                                                       2
                                         0    c 2    c 
                                                       
                                                       
          by the method of Cramer, one can obtain the Bishop trihedra as follows:
          The tangent:
                                          1      s    s
                                       T   ( asin ,acos ,b)                                    (13)
                                            
                                          c      c    c
          The M :
               1
                   s   bs  b   s   bs b   s   bs    s   bs  a   bs
          M  =  ( cos cos  c  c 2    c sin sin c 2  , cos sin c 2   sin cos c 2  , c sin c 2  )
                                          c
                               c
                                                    c
                                      c
            1
          The M :
               2
               b   s    bs    s   bs  b   s   bs     s  bs a   bs
          M  =  ( sin cos c 2   cos sin  c 2  , c  cos cos  c 2   sin sin c 2  , cos  c 2 )
                c
                   c
                                                     c
                                                           c
                                          c
                              c
            2
          We may choose a = 12, b = 5 and c = 13 in the equations (12–15). Then, one can see the curve at the
          Figure 21.1. So, we can illustrate spherical images see Figure 21.2.
                        Figure 21.1: Circular Helix b = b(s) for a = 12; b = 5 and c = 13



























                                           LOVELY PROFESSIONAL UNIVERSITY                                  253
   255   256   257   258   259   260   261   262   263   264   265