Page 151 - DMTH404_STATISTICS
P. 151

Unit 10: Approximate Expressions for Expectations and Variance



            Theorem 2.                                                                            Notes

            If X and Y are two independent random variables, then
                             E(X.Y) = E(X).E(Y)
            Proof.

            Let the random variable X takes values X , X , ...... X  and the random variable Y takes values Y ,
                                            1  2     m                                 1
            Y , ...... Y  such that P(X = X  and Y = Y) = p  (i = 1 to m, j = 1 to n).
             2     n              i       j   ij
                               m  n
            By definition  (E XY = åå X Y p
                            )
                                     j ij
                                    i
                              i= 1 j= 1
            Since X and Y are independent, we have p = P . ¢
                                                   P
                                                     j
                                              ij
                                                  i
                                  m  n        m      n
                               )
                       \   (E XY = å å  X Y  . P P =  å X P ´  YP
                                                  i å
                                      i  j  i  j  i    j  j
                                 i= 1 j= 1    i= 1  j=  1
                                   = E(X).E(Y).
            The above result can be generalised. If there are k independent random variables X , X , ...... X ,
                                                                              1  2     k
            then
                       E(X . X . ...... X ) = E(X ).E(X ). ...... E(X )
                          1  2     k     1   2       k
            10.2.4 Expectation of a Function of Random Variables
                 a
            Let  f X,Yf   be  a  function  of  two  random  variables  X  and  Y.  Then  we  can  write
                       m  n
            E f ( [ X ,Y )] = åå f (X i  ,Y j ) p ij
                      i=  1 j= 1
            I. Expression for Covariance

                                                                                E
                                                                                    =
                                                      Y -
            As a particular case, assume that  (Xf  i ,Y j ) (X=  i  -  X  )( j   Y  ) , where  ( )E X =   X   and  ( )  Y
                                                                                 Y
                                    m  n
                                 )ù = åå
                 Eé
            Thus,   (X -   X  )(Y -   Y û  (X -   X )(Y -   Y ) p ij
                   ë
                                          i
                                                 j
                                    i= 1 j= 1
            The above expression, which is the mean of the  product of deviations of values from their
            respective means, is known as the Covariance of X and Y denoted as Cov(X, Y) or  XY  . Thus, we
            can write
                       Cov ( ,X Y =  Eé ë (X -   X )(Y -  Y û
                               )
                                                )ù
            An alternative expression of Cov(X, Y)
                           X
                       Cov ( , ) =  Eé ë {X E-  ( ) }{Y E-  (Y  } ) ù û
                                        X
                             Y
                                 = é ë  { . Y E-  (Y  } ) -  ( E X  { ). Y E-  (Y  } ) ù û
                                E X
                                        =E X.Y - X.E(Y) =E(X.Y)- E(X).E(Y)








                                             LOVELY PROFESSIONAL UNIVERSITY                                  143
   146   147   148   149   150   151   152   153   154   155   156