Page 150 - DMTH404_STATISTICS
P. 150

Statistics



                      Notes
                                                                 X ¯ \Y ®  0  1 Total
                                                                          1       1
                                                                    0        0
                                                                          4       4
                                                                          1  1    2
                                                                    1
                                                                          4  4    4
                                                                             1    1
                                                                    2     0
                                                                             4    4
                                                                          2  2
                                                                   Total          1
                                                                          4  4
                                    The conditional distribution of X when Y = 0, is given by


                                                                  X       0  1  2 Total
                                                                          1  1
                                                               P
                                                                 X
                                                                 ( /Y =  0)    0    1
                                                                          2  2
                                    Also, the marginal distribution of X, is given by
                                                                  X   0  1  2 Total
                                                                      1  1  1
                                                                   P            1
                                                                   i
                                                                      4  2  4
                                    Since the conditional and the marginal distributions are different, X and Y are not independent
                                    random variables.

                                    10.2.3 Expectation of the Sum or Product of two Random Variables

                                    Theorem 1.
                                    If X and Y are two random variables, then E(X + Y) = E(X) + E(Y).

                                    Proof.
                                    Let the random variable X takes values X , X , ...... X  and the random variable Y takes values Y ,
                                                                     1  2    m                                  1
                                    Y , ...... Y  such that P(X = X  and Y = Y) = p  (i = 1 to m, j = 1 to n).
                                     2     n              i        j   ij
                                    By definition of expectation, we can write
                                              m  n          m  n     m  n      m   n    n   m
                                                                                     ij å å
                                      ( E X Y = åå (X +  Y j ) p =åå X p +  Y p =  X iå p +  Y j  p ij
                                                                 i ij åå
                                                                          j ij å
                                           )
                                        +
                                                         ij
                                                   i
                                             i=  1 j= 1    i= 1 j= 1  i= 1 j= 1  i= 1  j= 1  i= 1  j=  1
                                             m      n     æ     n          m       ö
                                                i i å
                                              = å X P +  YP j ç  p =  P i  and å p =  P j ÷
                                                           Here  å

                                                       j
                                                                   ij
                                                                              ij
                                             i=  1  j= 1  è     J= 1       i=  1   ø
                                               X
                                                     =  E ( ) +  E ( )
                                                    Y
                                    The  above result  can be  generalised.  If there are k  random  variables  X ,  X , ......  X ,  then
                                                                                                 1  2      k
                                    E(X  + X  + ...... + X ) = E(X ) + E(X ) + ...... E(X ).
                                       1   2       k     1     2        k
                                    Remarks: The above result holds irrespective of whether X , X , ...... X  are independent or not.
                                                                                    1  2    k
            142                              LOVELY PROFESSIONAL UNIVERSITY
   145   146   147   148   149   150   151   152   153   154   155