Page 291 - DMTH404_STATISTICS
P. 291

Unit 21: Confidence Intervals



            which is the same as                                                                  Notes

                                                       
                                               
                                        
                                            
                                                            1
                                      
                                    P{ b (X Y) (    ) a}   
                                                  1   2
            or
                                                                 
                                                                 
                                           
                                 b      (X Y) (    )     a    
                                               
                           P                    1  2               1  
                                  1    1       1    1       1    1  
                                n  m        n  m       n      
                                                           m  
                    1  n         1  m
            Here   X    X and Y    Y
                    n  1  i      m  1  i
                 (X Y) (    )
                   
                       
            Since         1  2  ~ N(0,1).
                       1  1 
                        
                       n  m 
            we can choose a and b to satisfy
                                                                 
                                                                 
                                 b     (X Y) (    )     a    
                                           
                                               
                           P                    1  2               1  
                                  1    1       1    1       1    1  
                                n  m        n  m       n      
                                                           m  
            provided that  is known. There are infinitely many such pairs of values (a, b). In particular, an
                                                                    1  1   1/2  
            intuitively reasonable choice is  a  = b = c, say. In  that case  c/ s            Z   /2   and  the
                                                                     n  m    
            confidence interval is


                                     1  1   1/2         1  1   1/2   
                                                    
                               
                             (X Y) –        Z    /2 ,(X Y)        Z   /2
                                     n  m               n  m      
                                       1  1   1/2
            The length of the intaval is  2       Z . Given  and  one can choose n and m to get a
                                               /2
                                       n  m 
            desired length confidence interval.
               2
            If   is unknown, we have from
                                    P{– b < (X – Y) (    2 ) a}   
                                               
                                                       
                                                            1
                                                  1
            that
                                                                 
                                                                 
                                           
                                               
                                 b     (X Y) (    )     a    
                           P                    1  2               1  
                              S    1    1   S    1    1   S    1    1  
                                                                 
                                                                  
                                 n  m      n  m       n  m  
                             


                                             LOVELY PROFESSIONAL UNIVERSITY                                  283
   286   287   288   289   290   291   292   293   294   295   296