Page 292 - DMTH404_STATISTICS
P. 292

Statistics



                      Notes
                                                      n          m
                                                       (X   X)2   (Y   Y) 2  (n 1)S  (m 1)S  2
                                                                                 2
                                                                    i
                                                          i
                                                                             
                                                                                      
                                    where             1          1              x        y
                                                                                 
                                                                 
                                                             
                                                           (n m 2)              n m 2
                                                                                    
                                    It is known that
                                          
                                     (X Y) (    2  )
                                       
                                             1
                                                   ~ t  n m 2 .  We can choose pairs of values (a, b) using Student’s t-distribution
                                                       
                                                      
                                            1  1 
                                      S2      
                                           n  m 
                                    with n + m – 2 degrees of freedom such that
                                                                                         
                                                                                         
                                                         b     (X Y) (   2 )    a    
                                                                   
                                                                       
                                                                          1
                                                                                           1  
                                                       S    1    1   S    1    1   S    1    1  
                                                        n  m       n  m        n      
                                                                                   m  
                                    In particular, an intuitively reasonable choice is a = b = c, say. Then
                                                                      c
                                                                             t  n m 2, /2
                                                                                
                                                                                 
                                                                              
                                                                      1  1 
                                                                 S      
                                                                      n  m 
                                                 1  1   1/2                  1  1   1/2   
                                                                            
                                                                
                                                                         
                                    and  (X Y) S          tn m 2,a/2,(X Y) S       t n m 2, /2 
                                                            
                                        
                                                                                          
                                                                                             
                                                                                           
                                                 n  m                        n  m         
                                    is a 1 –  level confidence interval for   –  .
                                                                    1   2
                                           Example 7: Let X , . . . , X , and Y , . . . , Y , n, m > 2, denote respectively independent
                                                         1     n      1      m
                                    random samples from the two distributions having respectively the probability density fundions
                                                                                                         2
                                     N(  ,  2 ) and N  N(  , 2 ).  We wish to obtain a confidence interval for the ratio   2 /  when 
                                        1  1         2  2                                             2  1      1
                                    and   are unknown.
                                         2
                                                         2
                                                            2
                                                                2
                                                                   2
                                    Consider the interval  (a S /S , bS /S ) a , b > 0,  where
                                                         2  1   2  1
                                                              1  n              1   m
                                                                         2
                                                                                            2
                                                                           2
                                                         2
                                                        S        (X   X) ,S      (Y   Y) ,
                                                         1           i     2            i
                                                              
                                                            (n 1)  1          (m 1)  1
                                                                                 
                                                                 1  n     1  m
                                                             X    X ,Y    Y .  We have
                                                                               i
                                                                      i
                                                                 n  1     m  1
                                                                              2
                                                                    S 2   2  S 
                                                                P a  2 2    2 2    b  2 2   1  
                                                                  
                                                                    S 1   1  S 1 
                                    so that
                                                                          2
                                                                       2
                                                                   1  (S /S )  1 
                                                                P     2 2  1 2       1 
                                                                   b  ( 2 / 1  )  a 
            284                              LOVELY PROFESSIONAL UNIVERSITY
   287   288   289   290   291   292   293   294   295   296   297