Page 292 - DMTH404_STATISTICS
P. 292
Statistics
Notes
n m
(X X)2 (Y Y) 2 (n 1)S (m 1)S 2
2
i
i
where 1 1 x y
(n m 2) n m 2
It is known that
(X Y) ( 2 )
1
~ t n m 2 . We can choose pairs of values (a, b) using Student’s t-distribution
1 1
S2
n m
with n + m – 2 degrees of freedom such that
b (X Y) ( 2 ) a
1
1
S 1 1 S 1 1 S 1 1
n m n m n
m
In particular, an intuitively reasonable choice is a = b = c, say. Then
c
t n m 2, /2
1 1
S
n m
1 1 1/2 1 1 1/2
and (X Y) S tn m 2,a/2,(X Y) S t n m 2, /2
n m n m
is a 1 – level confidence interval for – .
1 2
Example 7: Let X , . . . , X , and Y , . . . , Y , n, m > 2, denote respectively independent
1 n 1 m
random samples from the two distributions having respectively the probability density fundions
2
N( , 2 ) and N N( , 2 ). We wish to obtain a confidence interval for the ratio 2 / when
1 1 2 2 2 1 1
and are unknown.
2
2
2
2
2
Consider the interval (a S /S , bS /S ) a , b > 0, where
2 1 2 1
1 n 1 m
2
2
2
2
S (X X) ,S (Y Y) ,
1 i 2 i
(n 1) 1 (m 1) 1
1 n 1 m
X X ,Y Y . We have
i
i
n 1 m 1
2
S 2 2 S
P a 2 2 2 2 b 2 2 1
S 1 1 S 1
so that
2
2
1 (S /S ) 1
P 2 2 1 2 1
b ( 2 / 1 ) a
284 LOVELY PROFESSIONAL UNIVERSITY