Page 304 - DMTH404_STATISTICS
P. 304

Statistics



                      Notes                                     2               2
                                                           X   X        Y   Y 
                                                            i
                                                                            i
                                                       2
                                                                       2
                                                     x'        and   y' 
                                                                       i
                                                       i
                                                              2 X           2 Y
                                                         2    X   X  2    2    Y   Y  2
                                                                                     i
                                                                i
                                          or           x'      2     and   y'     2
                                                                              i
                                                         i
                                                                                   
                                                                 X                    Y
                                                                             i 
                                                                             2
                                                                                   2
                                          From these summations we can write    x'   y'   n
                                                                                   i
                                                  1   X   X  Y   Y 
                                                  n     i     i     1      X   X   Y  Y   1
                                                                                  i
                                                                           i
                                          Also,  r =                                x' y' i
                                                                                             i
                                                                  n                 n
                                                         X  Y              X      Y 
                                         Consider the sum x ' + y '. The square of this sum is always a non-negative number, i.e., (x '
                                                        i   i                                                   i
                                             2
                                         + y ')  ³ 0.
                                            i
                                         Taking sum over all the observations and dividing by n, we get
                                                      1  x'   y'     0   or    x'   y'  2x' y'   0
                                                                        1
                                                                2
                                                                                  2
                                                                              2
                                                      n    i   i        n     i   i   i  i
                                                      1      1      2
                                                                  2
                                                           2
                                          or            x'    y'    x' y'   0
                                                                  i
                                                                           i
                                                                         i
                                                           i
                                                      n      n      n
                                          or         1 + 1 + 2r  0  or  2 + 2r  0  or  r  – 1   .... (11)
                                         Further, consider the difference x ' - y '. The square of this difference is also non-negative,
                                                                    i  i
                                         i.e., (x ' - y ')  ³ 0.
                                                  2
                                              i  i
                                         Taking sum over all the observations and dividing by n, we get
                                                      1         2       1     2  2
                                                        x'   y'      or    x'   y'  2x' y'   0
                                                                   0
                                                      n    i   i        n     i  i    i  i
                                                      1    2  1   2  2
                                          or            x'    y'    x' y'   0
                                                           i
                                                                         i
                                                                           i
                                                                  i
                                                      n      n      n
                                          or         1 + 1 - 2r  0  or 2 - 2r  0  or  r  1      .... (12)
                                         Combining the inequalities (11) and (12), we get - 1  r  1. Hence r lies between -1 and +1.
                                    3.   If X and Y are independent they are uncorrelated, but the converse is not true.
                                         If X and Y are independent, it implies that they do not reveal any tendency of simultaneous
                                         movement either in same or in opposite directions. In terms of figure 12.3, the dots of the
                                         scatter  diagram  will  be  uniformly  spread  in  all  the  four  quadrants.  Therefore,
                                           X   X  Y   Y   or Cov(X, Y) will be equal to zero and hence, r  = 0. Thus, if X and Y are
                                                    i
                                              i
                                                                                            XY
                                         independent, they are uncorrelated.
                                         The converse of this property implies that if r  = 0, then X and Y may not necessarily be
                                                                              XY
                                         independent. To prove this, we consider the following data :
                                                                 X 1 2 3 4 5 6 7
                                                                 Y 9 4 1 0 1 4 9
            296                              LOVELY PROFESSIONAL UNIVERSITY
   299   300   301   302   303   304   305   306   307   308   309