Page 306 - DMTH404_STATISTICS
P. 306

Statistics



                      Notes               (v)   Sum of the product of deviations of X and Y values = 32

                                          (vi)  No. of pairs of observations = 10
                                    (b)   Given the following, calculate the coefficient of correlation :
                                          (i)   Sum of squares of deviations of X values from mean = 136

                                          (ii)  Sum of squares of deviations of Y values from mean = 138
                                          (iii)  Sum of products of deviations of X and Y values from their means = 122.
                                    Solution.
                                    (a)  Let u  = X  - A and v  = Y  - B be the deviations of X and Y values. We are given Su  = 5, Sv  =
                                             i   i       i  i                                            i     i
                                         4, Su  = 40, Sv  = 50, Su v  = 32 and n = 10.
                                                     2
                                             2
                                             i      i       i i
                                         Substituting these values in formula (10), we get
                                                              
                                                           
                                                         10 32 5 4
                                                                 
                                                r                        0.704
                                                 XY          2         2
                                                     10 40 5   10 50 4
                                                           
                                                                     
                                                                 
                                                       
                                                                                122
                                    (b)  Using formula (3) for correlation, we get  r    0.89
                                                                               136 138
                                           Example 6: Calculate the coefficient of correlation between age group and rate of mortality
                                    from the following data:
                                                    Age group      : 0-20 20-40 40-60 60-80 80-100
                                                    Rate of Mortality :  350  280  540  760  900
                                    Solution.
                                    Since class intervals are given for age, their mid-values shall be used for the calculation of  r.
                                                                 Table for  calculation of  r

                                            Age    M.V.    Rate of       X - 50      Y - 540         2    2
                                                                          i
                                                                                      i
                                           group    (X)   Mort.(Y)  u =    20    v =   10     u v   u i  v i
                                                                                  i
                                                                     i
                                                                                               i i
                                           0 - 20   10       350        - 2          - 19      38   4    361
                                           20 - 40  30       280         - 1         - 26      26   1    676
                                           40 - 60  50       540          0            0        0   0      0
                                           60 - 80  70       760          1           22       22   1    484
                                          80 -100   90       900          2           36       72   4   1296
                                            Total                        0 0         13 13    158   10  2817
                                    Here n = 5. Using the formula (10) for correlation, we get

                                                                 
                                                              
                                                         5 158 0 13
                                                          
                                                r                         0.95
                                                 XY         2           2
                                                     5 10 0   5 2817 13
                                                      
                                                               
                                                          
                                                                     
                                           Example 7:
                                    Deviations from assumed average of the two series are given below :
                                    Deviations, X series : - 10, - 6, - 4, - 1, 0, + 2, + 1, + 5, + 7, + 11
                                    Deviations, Y series : - 8, - 5, + 4, - 2, - 4, 0, + 2, 0, - 2, + 4


            298                              LOVELY PROFESSIONAL UNIVERSITY
   301   302   303   304   305   306   307   308   309   310   311