Page 311 - DMTH404_STATISTICS
P. 311

Unit 22: Correlation



            The formula for correlation can be written on the basis of the formula discussed earlier.  Notes


                                N   f X Y   f X  i   f Y  j  j 
                                               i
                                       ij
                                        i
                                          j
                       r XY                                2
                                   2
                             N  f X    f X  i   2  N  f Y  j  j 2     f Y  j  j 
                                        i
                                   i
                                 i
                                                                              X - A
                                                                                i
            When we make changes of origin and scale by making the transformations  u =   and
                                                                           i
                                                                                 h
                Y - B
                 j
            v =      , then we can write
             j
                  k
                                N   f u v   f u   f v   
                       r             ij  i  j  i  i  j  j
                        XY                 2               2
                                   2
                             N  f u    f u  i   N  f v  j  2 j     f v  j  j 
                                        i
                                 i
                                   i
                   Example 13:
            Calculate Karl Pearson's coefficient of correlation from the following data :
                                 Age(yrs) 
                                  M arks B    18   19  20   21   22
                                   20 - 25     3   2
                                   15 - 20          5   4
                                   10 - 15              7   10
                                    5 - 10                   3   2
                                    0 - 5                        4


            Solution.
            Let X  denote the mid-value of the class interval of marks. Various values of X  can be written as
                i                                                         i
            22.5, 17.5, 12.5, 7.5 and 2.5.
            Further, let u  = (X  - 12.5) ÷ 5. Various values of u  would be 2, 1, 0, - 1 and - 2.
                      i   i                        i
            Similarly, let Y denote age. Various values of Y are 18, 19, 20, 21 and 22.
                        j                         j
            Assuming v = Y - 20, various values of v would be - 2, - 1, 0, 1 and 2.
                     j   j                   j
            We shall use the values of u  and v in the computation of r.
                                  i     j






















                                             LOVELY PROFESSIONAL UNIVERSITY                                  303
   306   307   308   309   310   311   312   313   314   315   316