Page 310 - DMTH404_STATISTICS
P. 310

Statistics



                      Notes                              6 210 3 60
                                                                  
                                                           
                                                               
                                                r                          0.99
                                                 XY
                                                      
                                                                    
                                                          
                                                               
                                                     6 19 9 6 3950 3600
                                                                              2
                                                                       1    0.99  
                                                                             
                                                                      
                                                            
                                    Probable error of r, i.e.,  P.E. r   0.6745    0.0055
                                                                           6
                                           Example 12:
                                    Test the significance of correlation for the values based on the number of observations (i) 10, and
                                    (ii) 100 and r = 0.4 and 0.9.
                                    Solution.
                                                                                                1 0.4 2
                                                                                                 
                                                                                       
                                    (i)  (a)    Consider  n  =  10  and  r  =  0.4.  Thus,  P.E. r   0.6745    0.179   and
                                                                                                   10
                                                6 P.E. = 6 × 0.179 = 1.074. Since |r|< 6 P.E., r is not significant.
                                                                                  1 0.9  2
                                                                                    
                                    (i)  (b)    Take n = 10 and r = 0.9. Thus,  P.E. 0.6745      0.041  and 6 P.E. = 6 × 0.041 =
                                                                                     10
                                                0.246. Since |r|> 6 P.E., r is highly significant.
                                                                                      1 0.4  2 
                                    (ii)  (a)   Take n = 100 and r = 0.4. Thus,  6P.E. 6 0.6745     0.34
                                                                                         100
                                                Since |r|> 6 P.E., r is significant.

                                                                                      1 0.9  2 
                                    (ii)  (b)   Take n = 100 and r = 0.9. Thus,  6P.E. 6 0.6745     0.077
                                                                                         100
                                                Since |r|> 6 P.E., r is significant.

                                    22.6 Correlation in a Bivariate Frequency Distribution


                                    Let the two variables X and Y take respective values X , i = 1, 2, ...... m and Y, j = 1, 2, ...... n. These
                                                                               i                j
                                    values, taken  together, will make  m´n pairs  (X ,Y). Let f  be the  frequency of this pair. This
                                                                           i  j    ij
                                    frequency distribution can be presented in a tabular form as given below :
                                                         Y 
                                                         XB    Y 1  Y 2    Y j    Y n  Total
                                                          X  1  f 11  f 12    f 1j    f 1n  f 1
                                                          X  2  f 21  f 22    f 2j    f 2n  f 2
                                                                                    
                                                          X i   f i1  f i2  f ij    f in  f i
                                                                                    
                                                          X  m  f m1  f m2   f mj    f mn  f m
                                                         Total  f  1  f  2    f  j    f  n  N

                                              ij 
                                    Here    f   f   f   N (the total frequency).
                                                   i 
                                                        j



            302                              LOVELY PROFESSIONAL UNIVERSITY
   305   306   307   308   309   310   311   312   313   314   315