Page 308 - DMTH404_STATISTICS
P. 308

Statistics



                      Notes
                                           Example 9:
                                    Calculate Karl Pearson's coefficient of correlation for the following series :
                                                        Price (in Rs)  :  10  11  12  13  14  15  16  17  18  19
                                                       Demand (in kgs) : 420 410 400 310 280 260 240 210 210 200
                                    Solution.
                                                                 Table for  calculation of  r

                                                 Price Demand   u = X - 14 v =  Y - 310       2   2
                                                  (X)    (Y)                    10     uv    u   v
                                                  10     420       - 4         11      - 44  16 121
                                                  11     410       - 3         10      - 30   9 100
                                                  12     400       - 2          9      - 18   4   81
                                                  13     310       - 1          0        0    1    0
                                                  14     280         0         - 3       0    0    9
                                                  15     260         1         - 5      - 5   1   25
                                                  16     240         2         - 7     - 14   4   49
                                                  17     210         3        - 10     - 30   9 100
                                                  18     210         4        - 10     - 40  16 100
                                                  19     200         5        - 11     - 55  25 121
                                                 Total               5        - 16    - 236  85 706

                                                        10 236 5 16
                                                          
                                                              
                                                                 
                                                r                         0.96
                                                         
                                                                    
                                                                
                                                    10 85 25 10 706 256
                                                      
                                           Example 10:
                                    A computer while calculating the correlation coefficient between two variables, X and Y, obtained
                                    the following results :
                                                                          2
                                                          2
                                          n = 25, X = 125, X  = 650, Y = 100, Y  = 460, XY = 508.
                                    It was, however, discovered later at the time of checking that it had copied down two pairs of
                                                 X   Y                        X   Y
                                    observations as  6  14  in place of the correct pairs  8  12 . Obtain the correct value of r.
                                                  8  6                        6   8
                                    Solution.

                                                                        2
                                    First we have to correct the values of X, X ......etc.
                                                Corrected X = 125 – (6 + 8) + (8 + 6) = 125
                                                          2
                                                Corrected X  = 650 – (36 + 64) + (64 + 36) = 650
                                                Corrected Y = 100 – (14 + 6) + (12 + 8) = 100

                                                          2
                                                Corrected Y  = 460 - (196 + 36) + (144 + 64) = 436
                                    Corrected SXY = 508 - (84 + 48) + (96 + 48) = 520

                                                         25 520 125 100
                                                                    
                                                                
                                                           
                                                r                               0.67
                                                    25 650   125  2  25 436   100  2
                                                      
                                                                    

            300                              LOVELY PROFESSIONAL UNIVERSITY
   303   304   305   306   307   308   309   310   311   312   313