Page 307 - DMTH404_STATISTICS
P. 307

Unit 22: Correlation



            Find out Karl Pearson's coefficient of correlation.                                   Notes

            Solution.
            Here the values of u  = X  - A and v  = X  - B are given.
                            i  i        i  i
            Table for calculation of r


                       u   - 10  - 6   - 4  - 1   0  2   1   5     7   11     5
                        i
                       v    - 8  - 5    4   - 2  - 4  0  2   0   - 2    4  - 11
                        i
                     u v     80   30  - 16   2    0  0   2   0  - 14   44   128
                      i i
                        2
                       u    100   36   16    1    0  4   1  25    49  121   353
                        i
                        2
                       v     64   25   16    4   16  0   4   0     4   16   149
                        i
            Here n = 10.
                                  
                                10 128 5   11  
                                      
                       r XY                        0.609
                             10 353 5  2  10 149 11 2
                               
                                              
                                   
                                          
                   Example 8:
            From the following table, find the missing values and calculate the coefficient of correlation by
            Karl Pearson's method :
                       X :   6      2   10    4    ?
                       Y :   9     11     ?   8    7

            Arithmetic means of X and Y series are 6 and 8 respectively.
            Solution.
            The missing value in X - series = 5 × 6 – (6 + 2 + 10 + 4) = 30 – 22 = 8

            The missing value in Y - series = 5 × 8 – (9 + 11 + 8 + 7) = 40 – 35 = 5
                                        Table for  calculation of  r
                               X - X d Y - Yi d X - Xi Y - Yi d X - Xi d Y - Yi 2
                                                      d
                                                                     2
                      X    Y
                      6    9      0       1           0           0         1
                      2    11   - 4       3         - 12         16        9
                     10    5      4     - 3         - 12         16        9
                      4    8    - 2       0           0           4        0
                      8    7      2     - 1          - 2          4         1
                    Total                           - 26         40        20

                                                   26
            Using formula (3) for correlation, we get  r      0.92
                                                  40 20














                                             LOVELY PROFESSIONAL UNIVERSITY                                  299
   302   303   304   305   306   307   308   309   310   311   312