Page 87 - DMTH504_DIFFERENTIAL_AND_INTEGRAL_EQUATION
P. 87

Differential and Integral Equation




                    Notes
                                   4.3 Rodrigue s Formula for Laguerre Polynomials L         ( )
                                                                                              x
                                                                                            n
                                   To prove

                                                                    e  x  d n  n  x
                                                             x
                                                           L n ( ) =   n  x e   for n  0, 1, 2,            ...(i)
                                                                     ! n dx
                                   Proof: Using Leibnitz s theorem we have

                                                     e  x  d n  n  x  e  x  n  n  x  n  1  n  1  x  n (n  1)  n  1  n  2  x    x
                                                          x e    =    x  ( 1) e  n n x  ( 1)  e         ( n n  1)x  ( 1)  e  ! n e
                                                      ! n dx n       ! n                           2
                                                 e x  n  n  x     n  1  n  1  x n (n  1)   n  2  n  2  x     x
                                                    x  ( 1) e  n n x  ( 1)  e        ( n n  1)x  ( 1)  e  ! n e
                                                  ! n                           2

                                                                    x
                                                                    e e  x  n n    n  1 n n !  n  1
                                                                 =      ( 1) x  ( 1)       x        ! n    ...(ii)
                                                                      ! n            (n  1)!
                                                                 = ( 1) n  ! n  x n  ( 1) n  1  ! n  x n  1  ! n
                                                                                           2
                                                                        ( !) 2       (n  1)! . !       ! n
                                                                        n
                                                                                             i
                                                                    n         ! n
                                                                                         x
                                                                 =    ( 1) r  2    x r  L n ( )           ...(iii)
                                                                          r
                                                                    r  0  ( !) (n r )!
                                                                    e  x  d n  n  x
                                   Hence                   L n ( ) =    n  x e  .
                                                             x
                                                                     ! n dx
                                   First few Laguerre Polynomials from Rodrigue s Formula

                                   We have from Rodrigue s formula

                                                                    e  x  d n  n  x
                                                           L n ( ) =   n  x e
                                                             x
                                                                     ! n dx
                                   Putting                    n = 0

                                                                    e x  d 0  0  x
                                                             x
                                                           L 0 ( ) =    0  (x e  ) 1
                                                                    0! dx
                                   Putting                    n = 1

                                                                    e x  d  x  x  x    x
                                                             x
                                                           L 1 ( ) =    (xe  )  e e  xe   1 x
                                                                    1! dx
                                   Putting                    n = 2

                                                                    e  x  d 2  2  x  e x  d  x  2  x
                                                           L 2 ( ) =    2  x e       2xe   x e
                                                             x
                                                                    2! dx       2! dx
                                                                    e x  x     x  2  x
                                                                 =    2e   4x e  x e
                                                                    2!



          80                                LOVELY PROFESSIONAL UNIVERSITY
   82   83   84   85   86   87   88   89   90   91   92