Page 90 - DMTH504_DIFFERENTIAL_AND_INTEGRAL_EQUATION
P. 90

Unit 4: Laguerre Polynomials




                                                                                                Notes
                                                                       x
          4.5 Recurrence Formulae for Laguerre Polynomials L          ( )
                                                                     n
                                     x
                                                               x
                                                   )
                                                      x
          I.                (n  1)L n  1 ( ) = (2n  1 x L n ( ) nL n  1  ( )
                                                   tx
                                             1    (1 t )
                                  n
                                     x
               We have           t L n ( ) =    e
                               n  0        (1 t )
               Differentiating both sides with respect to t, we have
                                                           tx
                              n t n  1 L n ( ) =  1  2  1  x  e  (1 t  )
                                     x
                            n  0           (1 t )   1 t
                                               e  tx /(1 ) t  1  tx /(1 )
                                                                  t
                                  1
                                n
                           2
                                     x
               or      (1 t )  n t  L n ( ) = (1 t )    . x  e
                            n  0                (1 t )   1 t
                                                  n
                                                             n
               or      (1 t ) 2  n t n  1 L  ( ) = (1 t )  t L  ( ) x  t L  ( )
                                                     x
                                     x
                                                                x
                                   n                n          n
                            n  0               n  0       n  0
                                                   n
                                                             n
               or   1 2t t 2  n t n  1 L n ( ) = (1 t )  t L n ( ) x  t L n ( )
                                                                 x
                                                      x
                                     x
                            n  1               n  1       n  0
                                      n
                             x
                                                     x
                                         x
               or     n t n  1 L n ( ) 2  n t L n ( )  n t n  1 L n ( )
                    n  1         n  1       n  1
                                              n
                                                                   n
                                                            x
                                        =    t L n ( )  t  n  1 L n ( ) x  t L n ( )
                                                 x
                                                                      x
                                           n  0     n  0        n  0
                                      n
               Equating the coefficient of  t  on both sides, we have
                                 x
               (n  1)L n  1 ( ) 2n L n ( ) (n  1)L n  1 ( )
                        x
                                             x
                                             x
                                        = L n ( ) L n  1 ( ) xL n ( )
                                                    x
                                                           x
                                                              x
                                                      x
               or           (n  1)L n  1 ( ) = (2n  1 x )L n  ( ) nL n  1  ( )
                                     x
                                              x
                                     x
                                                       x
          II.                    xL n ( ) = nL n ( ) nL n  1 ( )
               We have
                                                  tx
                                             1   (1 t )
                                  n
                                     x
                                 t L n ( ) =    e
                               n  0        (1 t )
               Differentiating with respect to x, we have
                                             1   tx  /(1 t  )  t
                                  n
                                     x
                                 t L n ( ) =  (1 t )  e  1 t
                               n  0
                                              1   tx  /(1 t )
                                  n
                                     x
               or         (1 t )  t L n ( ) =  . t  e
                               n  0          1 t
                                           LOVELY PROFESSIONAL UNIVERSITY                                   83
   85   86   87   88   89   90   91   92   93   94   95